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ABSTRACT 

One of the largest challenges in genomics studies is determining the relationship 

between genotype and phenotype and then applying this knowledge to design principles. 

Metabolic engineering of bacteria can introduce targeted genomic interventions to well-

characterized genes for the purpose of modifying cellular metabolism, but in some cases, 

even for the model organism Escherichia coli, alternative strategies are required to 

achieve a desired phenotype. Metabolic evolution involves applying selective pressure to 

a population, and over time advantageous mutations will arise that improve organism 

fitness. To understand what mutations occurred during these experiments and how they 

affect phenotype, whole genome sequencing is required, followed by mutation analysis 

and strain characterization. 

Genome sequencing generates a large amount of data for researchers to examine 

and traditionally mutation analysis focuses only on gene variations. Supporting mutation 

analysis with computational tools and using a systems-level approach that utilizes public 

databases describing gene regulation and cellular metabolism improves upon existing 

analysis techniques and advances our understanding of how genotype relates to 

phenotype. 

Using our mutation analysis software, E. coli Variant Analysis (EVA), we 

examine antibiotic resistance, benzoate tolerance, and octanoic acid tolerance in E. coli. 

Our analysis pipeline includes a defined set of rules for mutation categorization. 

Prioritization of mutations supports efforts to reverse-engineer evolved strains and focus 

on the variants most likely to be damaging or relevant to phenotype. From mutation 

analysis results, we construct biological networks for visualization of mutations and 
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possible downstream effects. This allows for improved mutation interpretation and 

identification of possible mutation interactions. Furthermore, we integrate RNA-seq data 

into our analysis to investigate the effects of variant regulators on the transcriptome. In 

contrast to existing methods which focus on mutated genes, we incorporate annotations 

for binding sites and other regulatory features on the genome for the most complete 

interpretation based on the available genome and gene regulatory models. 
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CHAPTER 1.    INTRODUCTION 

Metabolic Evolution in Bacteria 

Microbial metabolic engineering is an essential tool for generating organisms capable 

of specialized chemical production. The Center for Biorenewable Chemicals aims to use a 

combination of biocatalysis and chemical catalysis methods in order to establish a sustainable 

system to produce bio-based chemicals using a model organism such as Escherichia coli and 

Saccharomyces cerevisiae. The biocatalysis component involves engineering microbial 

strains by adding extrinsic functionalities, such as introducing new enzymes, and redirecting 

target metabolic pathways. In such a way, it is possible to develop a biological system that 

uses carbohydrate feedstock as input for the production of target chemicals.  

Rational design introduces genome modifications in a purposeful manner based on 

knowledge of gene models and metabolic pathways. Gene knockouts and gene 

overexpression can modify metabolic pathways to direct carbon flow toward a desired 

process. Incorporation of novel enzymes can add new synthesis pathways to an organism for 

production of desired chemicals. However, target chemicals at high titers can cause toxicity 

which must be overcome for economically feasible production. 

Without fully characterizing the toxicity effect, metabolic evolution can be employed 

to generate a strain that exhibits improved tolerance. Metabolic evolution is a powerful 

method that requires minimal knowledge of the platform organism or underlying biological 

mechanisms to obtain a strain with a desired phenotype. It is considered a black box 

technique because scientists do not control or observe genetic changes as they occur. In a 

metabolic evolution experiment, variant strains with advantageous phenotypes emerge under 

strong selective pressure and displace the parent strain in a population. Improved fitness is 
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attributed to one or more mutations acquired during the experiment. Metabolic evolution may 

be repeated along with additional genomic interventions to obtain a desired phenotype. 

Reverse engineering of the evolved strain is required to elucidate which mutations are 

relevant to fitness and by what mechanisms. Reverse engineering involves a comparative 

analysis of the genomes of the parental strain and evolved strain to identify mutations and 

characterization of each mutation as well as their combined effects. In addition to 

comparative genomic analysis, additional omics studies may be performed to characterize 

evolved strain(s) and identify factors that contribute to improved fitness. Reverse engineering 

also requires reconstructing verified mutations in the parent strain and repairing mutations in 

evolved strains for comparative analyses. An overview of this design strategy for strain 

design is provided in Figure 1.1. Bioinformatics can aid in reverse engineering by predicting 

which variations may be damaging to genomic features and how mutated elements may 

affect other biological features through regulation and cellular metabolism. Understanding 

how sequence variations can affect genes, binding sites, and other genomic sequences is 

critical to characterizing an evolved strain. In some cases, biological elements with 

regulatory features are mutated, which have the potential to lead to large scale changes in 

gene expression. Gene regulatory network data can help identify downstream elements which 

could be indirectly affected such a mutation. Integrating this information with pathway data 

can highlight metabolic activities that may be altered and have relevance to phenotype. 
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Figure 1.1 Microbial engineering to achieve a desired phenotype. 

Both metabolic evolution and rational engineering strategies may be used in an iterative 
manner to achieve a desired phenotype. Metabolic evolution requires reverse engineering of 
evolved strain(s) to identify key mutations and understand their relevance to phenotype. 

 

Octanoic acid toxicity in E. coli 

Carboxylic acid is a testbed in E. coli from which CBiRC envisions generating 

multiple biorenewable chemical products. Fatty acids are useful in industrial applications 

including surfactants and lubricants (Makkar & Cameotra, 2002) and are an attractive target 

chemical due to the ability to break the elongation cycle at varying chain lengths by 

introducing foreign acyl-ACP thioesterases with different specificities (X. Zhang, Li, 

Agrawal, & San, 2011). However, at high concentrations, fatty acids become toxic to the E. 

coli, limiting titers, yields, and productivity. Specifically, fatty acid toxicity in E. coli has 

been shown to be related to membrane damage (Desbois & Smith, 2010; R. M. Lennen et al., 

2011). Toxicity effects on the membrane were also investigated in an octanoic acid (C8) 

challenge by characterizing the effect on the membrane (L. A. Royce, P. Liu, M. J. Stebbins, 

Metabolic
evolution

Whole genome
sequencing

Reverse
engineering
of evolved

strain(s)

Omics analyses 
and strain 

characterization

Mutation
analysis

Strain(s) with 
improved 

phenotype

Strategies for 
achieving 
desired 

phenotype

Rational 
engineering

Iterative strain 
design process



www.manaraa.com

 4 

B. C. Hanson, & L. R. Jarboe, 2013), confirming that short chain fatty acids damage cell 

membrane by increasing membrane fluidity and porosity. 

To further characterize the mechanisms of fatty acid toxicity, we performed 

transcriptome analysis of E. coli during exogenous challenge of octanoic acid (C8) (Royce et 

al., 2014). In the experiment, E. coli K-12 MG1655 was grown to mid-log phase in MOPS 

minimal media with and without 10 mM C8 at initial pH of 7.0. RNA was hybridized to 

AffyMetrix GeneChip E. coli Genome 2.0 Arrays for three biological replicates of each 

condition and analyzed at the DNA facility of Iowa State University. I performed background 

adjustment, normalization, and summarization calculations in MATLAB using GCRNA 

(Irizarry, Wu, & Jaffee, 2006; Z. Wu, Irizarry, Gentleman, Martinez-Murillo, & Spencer, 

2004). Many genes with increased expression in response to the C8 challenge were related to 

acid response, response to and regulation of pH, and biofilm formation. Genes with 

decreased expression were related to reduced motility, chemotaxis, and flagellum assembly. 

In addition, we identified perturbed genes associated with membrane function and integrity: 

bhsA, cpxP, cfa, and ompF. I also performed Network Component Analysis (NCA) (Fu, 

Jarboe, & Dickerson, 2011; Liao et al., 2003) to predicted altered transcription factor activity 

based on changes in transcript abundance of regulated genes. Notably, the transcription factor 

GadE (glutamate-dependent acid resistance system) was predicted to have altered activity, 

attributed to increased expression in acid resistance genes hdeABD and gadABCE in response 

to C8. Due to the significant increase in activity of the GadE regulon, glutamate 

supplementation was tested as a method to increase tolerance C8 but did not prove effective. 

We hypothesize that membrane damage impairs the glutamate-dependent acid resistance 

system during C8 challenge. 
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Octanoic acid-tolerant E. coli 

To overcome toxicity limitations, a more robust strain was engineered using a 

combination of rational design and metabolic evolution methods. The parent strain for the 

metabolic evolution experiment was ML115, which had been engineered with three deletions 

(fadD, ack-pta, and poxB) to inactivate the fatty acid beta-oxidation pathway to halt fatty acid 

degradation and two acetate pathways to redirect flux to increase the acetyl-CoA pool (M. Li, 

Zhang, Agrawal, & San, 2012). Microbial metabolic evolution was performed by 15 

sequential transfers with increasing C8 concentration from 10 mM to 30 mM over 714 hours. 

At the end of the experiment, evolved strains LAR1 and LAR2 were isolated for genome 

sequencing along with the parent strain (L. A. Royce et al., 2015). 

Genomic DNA of evolved strains LAR1, LAR2, and the parent strain, ML115, was 

isolated and sequenced using Illumina whole genome sequencing. I aligned short reads to the 

MG1655 reference genome and predicted mutations using methods outlined in (L. Royce, E. 

Boggess, T. Jin, J. Dickerson, & L. Jarboe, 2013) and found in Appendix A. Mutations 

predicted in both the ancestral and evolved strains were not considered for further analysis. A 

key mutation that was found in both evolved strains occurred in rpoC, which encodes the β’ 

subunit of RNA polymerase. A point mutation from A to C at position 1256 in rpoC results 

in an amino acid change of H419P. Two other mutations were predicted in basR (LAR1) and 

basS (LAR2) genes. In basR, a point mutation of G to T at position 82 results in an amino 

acid change of D28Y. In basS, a 27 base pair (bp) deletion results in the deletion of nine 

amino acids in the protein BasS. 

Genomic Mutations 

Spontaneous mutations may result from errors in DNA replication, DNA lesions, and 

transposable elements. Errors in DNA replication can arise when mis-paired nucleotides 
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result in a base substitution and strand slips at repeated sequences. Naturally occurring 

damage to DNA can cause spontaneous lesions that can lead to mutations. Depurination, the 

spontaneous loss of the glycosidic bond between a base and deoxyribose can lead to a 

substitution or loss of a nucleotide pair. Deamination of cytosine to uracil results in a base 

substitution. Oxidative damage can also cause DNA lesions leading to mutagenesis. In rare 

cases, the DNA molecule itself may break and in the act of non-homologous end joining 

nucleotides may be added or removed to repair the molecule (Moore & Haber, 1996). 

Finally, transposable elements, or “jumping genes,” consist of DNA sequences that are 

capable of moving and inserting into the genome at new positions. In a laboratory setting, 

increased mutation rates can be achieved with the use of chemicals that destabilize DNA 

molecules and by irradiation (e.g., ultraviolet light) (Lee, Feist, Barrett, & Palsson, 2011). 

Genomic mutations in bacterial systems can be categorized by their impact on DNA 

sequence. The following mutation types apply to bacterial systems in evolution studies: 

substitution, deletion, insertion, indel, amplification, and translocation. Substitution mutation 

describe replacing bases with an alternative sequence. A single nucleotide polymorphism 

(SNP) describes the substitution of a single base ((A)denine, (C)ytosine, (G)uanine, 

(T)hymine) for another. Deletions and insertions describe the excision or addition of 

nucleotides in the genome, respectively. In some cases, a more complex mutation may occur 

that results in a deletion and insertion of unequal lengths, which is known as an indel 

(insertion-deletion of DNA). Amplifications describe the replication of a DNA sequence and 

translocations refer to a DNA sequence that is relocated to a different position on the 

genome. 
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 Furthermore, mutations can be described by their change to protein-coding genes. 

Silent mutations describe an altered DNA sequence, but no change in the amino acid 

sequence. Missense mutations describe the substitution of an amino acid for another. A 

special case is the substitution of an amino acid for a premature stop codon, which is known 

as a nonsense mutation. A mutation that results in the loss of a stop codon is known as a 

nonstop or read-through mutation and transcription may continue until the next stop codon is 

encountered. In some cases, stop and start codons are preserved, but a DNA mutation results 

in an alternate stop/start codon that can alter translation initiation rates (Hecht et al., 2017) or 

require alternative release factors (Korkmaz, Holm, Wiens, & Sanyal, 2014). In-frame 

insertions, deletions, an indels that result in the insertion or deletion of amino acids and out-

of-frame mutations cause frameshifts that modify downstream codons and may result in loss 

of function. 

Genotype-Phenotype Relationship 

As the price of DNA sequencing continues to fall, more genomic data will continue to 

be generated for metabolic evolution and comparative studies. However, using the genetic 

sequence of an organism to predict its phenotype is an open biological problem. A similar 

ambition is to measure features of organism phenotype through molecular and cellular 

experiments and trace these characteristics back to features on the genome. An understanding 

the relationship between the genome and phenotypic traits aids both goals. Even for model 

organisms, discerning genotype-phenotype relationships remains a challenge as our 

knowledge of biological systems is incomplete and existing models are composed of 

entangled networks of regulatory activities such that altering one element may affect many 

other features. 
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Mutations in coding regions can alter transcript abundance, product abundance, and 

product function. Some genes encode transcription factors which regulate transcription of 

other genes. A variant transcription factor may show altered activity or binding site 

specificity, resulting in altered expression of regulated genes. In addition to genes, mutations 

in regulatory sites can contribute to the phenotype of evolved strains. Regulation of gene 

expression is a critical response mechanism to environmental stimuli and integral to 

controlling cellular behavior. Altering parameters such binding site affinity, transcription 

factor abundance, and regulatory elements functioning as secondary structures can also affect 

transcription and translation regulation. Gene products either directly (via genomic 

mutations) or indirectly (via regulation) changed by mutations can affect cellular structure or 

metabolism resulting in an observed phenotypic trait. Additionally, multiple mutations and 

may be additive, synergistic, or antagonistic in nature (Elena & Lenski, 1997; Szathmáry, 

1993).  

Goal of this work 

After a metabolic engineering experiment, a bottleneck occurs when mapping genetic 

modifications to phenotype. Analysis of strains obtained through metabolic evolution 

traditionally involves manual annotation of mutations in coding regions and evaluation of 

their individual contribution to fitness through functional or comparative studies. Typically, 

analysis does not consider extragenic variations (mutations outside of coding regions). The 

massive amount of sequence variation data generated in evolution experiments necessitates 

computational tools that can assess mutation implications. 

The goal of this project is to construct a framework to systematically analyze 

mutations and provide interpretations for both direct impact of mutations and potential 

downstream effects that occur through regulation. In doing so, we aim to support efforts to 
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reverse engineer adapted strains generated from metabolic engineering experiments and 

reduce the amount of time to a secondary round of metabolic engineering. 

To achieve this goal, genes, products, regulatory elements, metabolic pathway 

information, and relationships of these entities are included in the mutation analysis pipeline. 

Data is queried from publicly available databases RegulonDB (S. Gama-Castro et al., 2016) 

and EcoCyc (I. M. Keseler et al., 2017). 

 

Figure 1.2  Overview of EVA software design. 

EVA accepts text files that contain positional and sequence information about genomic 
mutations as input. Annotations for each mutation are obtained by querying publicly 
available E. coli databases. Depending on the type of mutation, various strategies can be 
employed for additional analysis, some of which use published protein sequences obtained 
from NCBI. Gene regulatory and metabolic data are retrieved from publicly available 
databases and used to construct biological networks that aid in visualizing mutations, their 
effects, and potential interactions. A text file containing annotations, reference and alternate 
feature sequences, and other analysis results is also generated as part of EVA’s output. 
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Translating between DNA, RNA, and amino acid molecules and defining a set of rules for 

types of variations and regulatory activities aid interpretations. Additionally, mutations are 

examined for their effect on molecular structures and binding affinities to predict if they have 

a significant impact to the organism. The proposed methods benefit the research community 

by broadening the study of mutations and mechanisms of adaptation. Additionally, 

automating portions of comparative genomic analysis reduces the lifecycle of adaptive 

evolution studies. 

Thesis Organization 

The following chapters are a collection of research papers and book chapters that are 

either published, under review, or intended for submission for publication when complete. 

They are organized as follows: Chapters 2-4 are research papers presented on the topic of 

mutation analysis for evolved strains in metabolic engineering experiments and elucidating 

genotype-phenotype relationships. Chapter 5 is a general discussion on the significance and 

impact of studies presented in Chapters 2-4. Appendix A is a methods chapter on reverse 

engineering of evolved strains. Appendix B is a user manual for our mutation analysis 

software. Appendix C contains supplementary material. 

Chapter 2: Mutation Analysis for Metabolic Experiments in Escherichia coli 

This research paper describes E. coli Variant Analysis (EVA) software for mutation 

analysis in E. coli. Methods for annotating and interpreting mutations as well as integration 

with gene regulatory and metabolic networks are presented to investigate mutation effects 

and aid in elucidating their genotype-phenotype relationship. Additionally, algorithms for 

network reduction can highlight potential mutation-mutation interactions. 
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Chapter 3: Genome-level Reverse Engineering of Escherichia coli Evolved for Increased 

Short-Chain Fatty Acid Tolerance and Production 

Chapter 3 is a research paper that discusses metabolic engineering as a method for 

increasing tolerance and production of octanoic acid and genomic analysis of evolved E. coli 

strains. Assembly and analysis of short read sequence data is an integral part of this work. 

Comparative analysis of evolved and ancestral genomes is required for reverse engineering. 

Mutation analysis and interpretation identifies potentially damaging variants in the evolved 

strain, including a global regulator and transcription factor which may alter expression of 

many regulated genes. 

Chapter 4: Transcriptomic Analysis of Escherichia coli Evolved for Increased Short-Chain 

Fatty Acid Tolerance and Production 

Chapter 4 is a research paper extends previous work to reverse engineer E. coli 

evolved for octanoic acid tolerance with the addition of RNA-seq experiments. 

Transcriptomic analysis was performed for an evolved strain (LAR1) and ancestral strain 

(ML115) in both control and fatty acid production conditions at three time points. 

Normalization and differential expression analysis led to the identification of genes that were 

perturbed for all strain contrasts. This list of genes was then annotated with associated sigma 

factors and presence in the BasR. Genes with significant fold changes were submitted as 

candidates for further investigation into the effect of previously identified mutations in the 

global regulator, RpoC, and transcription factor, BasR. The use of EVA software in 

combination with transcriptomic data was a key component in predicting the effects of 

previously identified genomic mutations in transcription regulators. EVA was also used to 
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identify relationships among differentially expressed genes and highlight metabolic pathways 

in which they participate. 

Chapter 5: Conclusions and future work 

The final chapter summarizes important findings and discusses the significance of the 

work presented in chapters 2-4. The future work describes recommendations for extending 

and improving upon the work presented in this dissertation. 

Appendix A: Identification of Mutations in Evolved Bacterial Genomes 

Reverse engineering of microbial strains evolved in metabolic evolution experiments 

is necessary to understand the mechanisms that result in a desired phenotype. This book 

chapter details methods for short read analysis of genomic data and mutation identification. 

Appendix B: E. coli Variant Analysis (EVA) User Guide 

This section is a user guide for EVA software. Various software options and usage 

are described in detail.  
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Abstract 

Background 

Metabolic evolution, a tool used in strain engineering, involves applying selective 

pressure to induce advantageous mutations to a strain for manipulating characteristics such as 

tolerance, product yield, and growth properties. This method does not reveal which acquired 

mutations led to improved fitness, by what mechanism, or how mutated genomic features 

interact to produce a phenotype.  

 

Results 

This work establishes a pipeline for mutation analysis in Escherichia coli called E. 

coli Variant Analysis (EVA) that integrates public databases and multiple sequence analysis 

tools. EVA annotates mutations, applies analysis strategies to predict effects of variations, 

and constructs a biological network of mutated genomic features and downstream gene 

regulatory and metabolic pathway features. Biological networks produced by EVA aid in 

reverse engineering evolved strains. When applied to data from E. coli evolution 

experiments, EVA annotates mutations in non-coding regions that traditional analyses 
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overlook. Networks generated by EVA visualize regulons downstream of mutated features, 

mutation interactions, and mechanisms related to enhanced fitness. 

 

Conclusion 

EVA advances mutation interpretation by annotating regulatory features and 

incorporating gene regulatory, signaling pathway, and metabolic pathway data downstream 

of mutated features. EVA generates biological networks comprised of these features and their 

interactions to support reverse engineering of evolved strains. Software automation reduces 

the burden of annotation, interpretation, and prioritization of results, thereby decreasing the 

time to follow-up experimentation and further rounds of metabolic evolution. 

 

Background 

Microbial metabolic engineering can develop specialized strains that exhibit desired 

phenotypes. For well-characterized organisms, a rational design approach may be used for 

strain development (Jang et al., 2012). Rational design entails performing targeted genome 

modifications based on literature evidence, metabolic pathway knowledge, and 

computational predictions intended to alter enzyme abundance and/or function. When 

genome changes that enable the desired phenotype are unknown, researchers can perform a 

metabolic evolution. Under selective pressure, variants with advantageous mutations displace 

the parent strain in a population. Reverse engineering of evolved strains identifies beneficial 

genetic variations (Jin, Chen, & Jarboe). Metabolic evolution is often considered a black box 

technique because scientists do not control or observe genetic changes as they occur. 

As next-generation sequencing methods become more accessible and affordable, 

comparing the entire genomes of the parent strain and one or more evolved derivatives is 
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becoming common in evolutionary experiments (Barrick et al.; Haft et al.; Harden et al.; 

Herring et al.; LaCroix et al.). In these experiments, researchers align short-read data to the 

parent genome or a published wild-type ancestral genome and predict genetic variations 

between the reference and aligned strains with SNP-calling algorithms. Improved fitness in 

an evolved strain is attributed to genetic variations not present in the parent strain. 

Determining which mutations are random and which contribute to the evolved phenotype 

remains a reverse engineering challenge that requires a considerable amount of further 

research and experimentation. 

Traditionally, researchers inspect genomic variations in coding regions to determine 

if they disrupt gene transcription or protein function and search the literature for relevance to 

the observed phenotype (Byrne et al.; Utrilla et al.). While this can reveal important changes 

such as loss of function, it ignores mutations in non-coding regions responsible for regulatory 

activities. In other studies, researchers examine every predicted mutation, but this assumes all 

have equal importance and requires researchers to construct numerous variant strains to carry 

out necessary follow-up studies (Atsumi et al.). Parallel evolution experiments for multiple 

populations can identify commonalities in independently acquired mutations (Sandberg et 

al.). A more complex experimental design, VERT (Visualizing Evolution in Real-Time), 

involves collecting intermediate samples at various time points during the evolution 

experiment for populations in competition (Reyes, Winkler, & Kao, 2012). The VERT 

method provides insight into the order of acquired mutations and their relation to organism 

fitness. Regardless of experimental design, mutation interpretation remains a challenge. 

Methods to predict if amino acid sequence variants are tolerated or damaging include 

SDM (Site Directed Mutator) (Worth, Preissner, & Blundell), SIFT (Sorting Intolerant From 
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Tolerant) (Ng & Henikoff), and Provean (Protein Variance Effect Analyzer) (Choi, Sims, 

Murphy, Miller, & Chan). Each algorithm uses residue conservation statistics and amino acid 

properties to predict the likelihood of observing an amino acid substitution. These 

computational methods classify amino acid sequence variations into two general cases: 

tolerated and damaging. Tolerated variations are predicted not to affect protein function and 

damaging variations are predicted to impair protein function. Computational methods 

capable of predicting the introduction of novel functions due to a change in the amino acid 

sequence do not currently exist. 

The SDM algorithm relies upon amino acid substitution frequencies for families of 

homologous proteins with available structures and requires a Protein Data Bank (PDB) as 

input. SDM predicts disruptive mutations based on a stability score that describes the change 

in free energy between the wild-type and predicted variant protein structures and 

conservation of structural features. SDM offers a unique mutation analysis, however many 

proteins lack a PDB structure and proteins with more than one structure require researchers 

to choose which is most relevant to their experimental conditions, a constraint that is not 

readily automated. 

SIFT predicts the impact of missense mutations based on residue conservation 

calculated from BLAST multiple sequence alignments of homologous sequences and amino 

acid properties. The software accepts amino acid variations and their relative positions in a 

protein but does not support nucleotide variations in the genome as input. SIFT assumes that 

variants which occur naturally in highly similar sequences are less likely to disrupt a protein 

than variants that are rarely or not at all observed. SIFT may accept National Center for 
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Biotechnology Information (NCBI) protein IDs or an amino acid sequence in FASTA format 

as input. 

Provean is similar to SIFT, but employs the added step of clustering BLAST results 

and uses the BLOSUM62 (Henikoff & Henikoff) matrix for scoring amino acid substitutions 

rather than constructing a PSSM matrix based on BLAST results. Multiple sequence 

alignments are performed between the query amino acid sequence and clusters of related 

sequences and alignment scores are averaged. An amino acid variation is predicted to be 

damaging if the value is below a threshold (authors recommend a cutoff of ≤ -2.5 based on 

testing performed with the UniProt human dataset). Like SIFT, Provean is primarily intended 

for human studies but can be used for other organisms by submitting the wild-type amino 

acid sequence and a description of the variation. The description format follows Human 

Genome Variant Society (HGVS) format (J. T. den Dunnen & Antonarakis; Johan T. den 

Dunnen et al.). 

In addition to genes, mutations in regulatory sites can contribute to the phenotype of 

evolved strains. Regulation of gene expression is a critical response mechanism to 

environmental stimuli and integral to controlling cellular behavior. Tuning parameters such 

as RNA polymerase (RNAP) binding affinity, transcription factor abundance, transcription 

factor binding site (TFBS) affinity, and ribosome binding site (RBS) affinity can control 

RNA and protein abundance. One of the most extensively studied regulatory sites is the σ70 

promoter (Finn; Malhotra, Severinova, & Darst). It has been shown that point mutations in 

the consensus sequence can result in a broad range of gene expression control (Bakke et al.). 

For promoters and other binding sites, high-throughput studies on a large number of 

sequence variations to determine affinity and specificity (Stormo & Zhao). Changes to non-
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coding RNAs and regulatory elements functioning as secondary structures can also affect 

transcription and translation (Yu, Bing, & Zhenhua) and several metrics exist to describe 

conformational differences between wild-type and variant sequences (Avihoo & Barash, 

2006; Kiryu & Asai; Sabarinathan et al.).  

The proposed EVA workflow includes the following components: annotation, 

analysis, prioritization, and network construction as shown in Figure 2.1. Our method 

expands upon traditional mutation analysis by investigating changes to non-coding regulatory 

elements. While regulators correspond to a small percentage of total nucleotides, they occur 

throughout the entire genome and perform functions critical to transcription and translation. 

EVA prioritizes mutations based on their predicted effect on properties such as transcription 

and translation completion, structural stability, and binding site affinity. Based on the type of 

mutation and supporting information from sequence and structure analysis, EVA assigns 

annotated mutations a priority to aid researchers in interpretation and planning follow-up 

experimentation. A high priority indicates the mutation is predicted to be damaging to a gene 

or destroy a regulator function, a low priority indicates the mutation is predicted to be 

tolerated by the feature, and an unassigned priority denotes an undetermined effect. Finally, 

EVA identifies features indirectly affected by mutations in genes or regulators (e.g., a 

mutated promoter indirectly affects genes in its transcription unit) from the E. coli gene 

regulatory network. The E. coli metabolic network offers associated reaction and pathway 

data and insight into the phenotypic impact of mutations.  
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Figure 2.1  EVA pipeline 

Mutations are imported and are annotated with corresponding genomic features that include 
coding regions, structures, or binding sites. Each annotation is processed as either DNA or 
RNA and the reference (wild-type) sequence is compared to the alternate sequence to classify 
the mutation type. Mutations are classified based on if they are predicted to be damaging to 
the genomic feature. Nodes corresponding to genomic features in annotations are used as 
seed nodes to build a biological network based on gene regulatory and metabolic networks 
that illustrate downstream effects of genomic mutations.  
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Methods 

Mutation Annotation 

EVA compiles relevant genomic feature data (e.g., feature type, name, strand, 

position, and sequence) and determines the span for each annotation. The mutation span 

describes the mutation and genomic feature intersection on the genome. These cases include 

when the mutation is internal to the genomic feature, the mutation spans the left or right end 

of the genomic feature, the mutation coincides exactly with the genomic feature, or the 

mutation encompasses the genomic feature and surrounding DNA. Pairs of mutations and 

genomic features together form annotations. 

EVA accepts Variant Call Format (VCF version 4.3) files (.vcf), Breseq Genome Diff 

output files (.gd) or a comma-delimited text file (.csv or .txt) as input. CSV files must have 

one mutation per line, given as the genomic position, reference (wild-type) DNA sequence, 

and alternate DNA sequence. Users may submit input files designated as parent (i.e., 

ancestral) strains or derivative (i.e., evolved) strains. EVA requires at least one derivative 

strain. 

EVA implements an interface to RegulonDB (Gama-Castro et al.) that it uses to 

execute queries and retrieve annotation data for E. coli. EVA supports RegulonDB versions 

9.1, 9.2, and 9.3, and 9.4. RegulonDB version 9.1, corresponds to EcoCyc version 19.5 

(Keseler et al.) and the E. coli K-12 MG1655 genome version U00096.2 (Riley), while later 

versions correspond to EcoCyc versions 20.0, 20.1, and 20.5, respectively, and E. coli K-12 

MG1655 genome version U00096.3 (Hayashi et al.). EVA additionally requires a 

supplementary database derived from EcoCyc 21.0. All accessed databases and short read 

alignment algorithms should use the same version of the genome for compatibility when 

referencing absolute positions on the genome. E. coli strains that are highly similar to 
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MG1655 can also benefit from EVA. To do so, researchers must first align short-read data to 

the reference genome that corresponds to their installation of RegulonDB. EVA output refers 

to reference genome position coordinates in MG1655, but annotations and analysis will 

generally be consistent. Inherent differences between MG1655 and an alternate strain will be 

present across all samples and EVA will not consider these variations during network 

construction. 

For each mutation, EVA queries the RegulonDB database for features that coincide 

with the specified mutation region. During the annotation step, EVA considers all 

RegulonDB objects with defined absolute positions on the genome. The RegulonDB database 

maintains such data for genes, promoters, ribosome binding sites (RBS), terminators, 

attenuators, sRNA binding sites, riboswitches, and transcription factor binding sites (TFBS) 

and we refer to these as genomic features. Figure 2.2 gives an overview of several genomic 

features and their roles in E. coli. A mutation may coincide with multiple genomic features or 

no genomic features. By default, EVA does not annotate regulatory features for which the 

entire regulon also occurs inside the mutation to avoid network representation of mutated 

regulators that have no known added effect on the organism when a mutation is large. Users 

may change this setting to report all features in a region if desired. To reduce computation 

time for large mutations, EVA will only annotate coding regions. The default threshold for 

this behavior is 1 kilobase (kb) but users can change this to an alternative size. 
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Figure 2.2  Gene model 

A gene regulation model for a bacterial system. Proteins that bind at TFBS regulate 
transcription of the DNA template strand. The promoter is responsible for recruiting RNA 
polymerase and transcription begins at the transcription start site (TSS). Transcription 
continues through genes A, B, and C until RNA polymerase stalls at the termination stop 
point (TSP). This may occur due to either a terminating hairpin followed by a U track, or 
Rho factor, which is recruited at the Rho utilization (rut) site. Translation of mRNA is 
regulated by antisense sRNAs, riboswitches, and RBSs that contain the Shine-Dalgarno 
sequence. 

 

Analysis and Prioritization 

Automating the analysis and prioritization of mutated features enables investigators to 

distinguish between mutations predicted to be damaging from mutations predicted to be 

tolerated. EVA employs different analysis strategies for mutations in coding regions, 

structural features and RNAs, and binding sites, but the design allows for additional methods 

to be incorporated in the future. This section presents the implemented strategies for 

analyzing and prioritizing annotations for supported genomic features. 

 

Genes 

EVA classifies mutations that correspond to genes that encode proteins by the 

resulting change in the amino acid sequence and assigns high or low priorities based on the 

predicted severity of impact as outlined in Error! Reference source not found.. The 
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reference nucleotide sequence refers to the wild-type gene sequence in the reference genome. 

From this sequence, EVA derives an alternate nucleotide sequence by substituting the 

corresponding region in the reference sequence with the alternate mutation sequence. In 

some cases, constructing the alternate sequence requires additional processing. For example, 

in the case of a frameshift or deletion of the stop codon, the alternate gene sequence is the 

DNA sequence that begins at the gene start codon and extends to the first recognized stop 

codon. EVA classifies mutations that encompass a gene or modify the start codon without 

resulting in an alternate start codon as knockouts (KO) or loss of start codon and does not 

perform further analysis. 

Table 2.1  Prioritization of mutations in protein-coding genes 

Provean scores ≤ -2.5 are predicted to be damaging and are assigned a high priority. Scores 
not meeting the cutoff are predicted to be tolerated. In cases where a score cannot be 
computed, the priority is undefined and the mutations require further review by the 
investigator. 

Variation Description 
Low priority  

Silent No change in amino acid sequence. 
Alternate Stop Stop codon is replaced with an alternate stop codon. 

High priority  
KO Entire gene has been deleted or altered. 
Alternate Start Start codon is replaced with an alternate start codon. 
Start Loss Loss of start codon. 
Nonsense Substitution of one amino acid for a stop codon. 

Determined by 
Provean score 

 

Missense Substitution of one amino acid. 
Deletion Deletion of one or more amino acids. 
Insertion Insertion of one or more amino acids. 
Delins Deletion followed by insertion of one or more amino acids. 
Frameshift+ Out-of-frame insertion. 
Frameshift- Out-of-frame-deletion. 
Read-through Loss of stop codon results in read-through to next stop codon. 
Duplication Duplication of an amino acid sequence. 

 



www.manaraa.com

 26 

Prioritization of mutations that result in variant amino acid sequences is based on 

Provean scores. We compiled libraries of supporting sequences for the E. coli U00096.2 and 

U00096.3 transcriptomes to improve performance and avoid the time-consuming homology 

search for each gene annotation. Libraries were generated using Provean version 1.1.5, NCBI 

BLAST version 2.4.0+, CD-HIT version 4.6.4, and the NCBI BLAST non-redundant 

sequence database (last updated on January 12, 2015) using Cyverse resources (Merchant et 

al.). 

EVA translates both the reference and alternate nucleotide sequences to amino acid 

sequences using the bacterial genetic code specified in NCBI translation table 11. If there 

exists no difference between the reference and alternate amino acid sequences, the gene 

mutation is silent. Where possible, EVA produces variation descriptions using HGVS 

nomenclature from the reference and alternate amino acid sequences. EVA generates this 

description by calculating the greatest common prefix and greatest common suffix of the 

reference and alternate amino acid sequences, assessing the sequence variation, and selecting 

the proper HGVS descriptor for the change in amino acid sequences. 

Because Provean only supports certain HGVS formats as input, EVA classifies amino 

acid variations as missense (single amino acid substitution), nonsense (premature stop 

codon), insertion (insertion of one or more amino acids), deletion (deletion of one or more 

amino acids), delins (deletion followed by an insertion), or duplication (duplication of amino 

acid region). EVA converts other mutations, such as frameshifts, into delins when possible. 

The reference amino acid sequence and HGVS variation description are submitted for 

Provean analysis. 
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EVA prioritizes gene annotations based on mutation type and Provean results. Silent 

mutations and those predicted to be tolerated (default threshold is a Provean score > -2.5) 

receive low priority, as they are unlikely to affect protein function. KOs, loss of start codons, 

and mutations predicted to be damaging are most likely to destroy protein function and are 

assigned high priority. Nonsense mutations and frameshifts are typically given a high priority 

unless they occur toward the end of the coding sequence. In some cases, such as a low 

number of sequence homologs, the Provean analysis may not be relevant, and EVA regards 

the priority as unassigned. 

 

Structural Features and RNAs 

Annotations corresponding to terminators, attenuators, riboswitches, and RNA 

genomic features are analyzed for changes in secondary structure. The reference nucleotide 

sequence refers to the wild-type genomic feature sequence in the reference genome. EVA 

constructs an alternate nucleotide sequence by substituting the region in the reference 

sequence that corresponds to the mutation with the alternate mutation sequence. The 

RNAfold methods in the Vienna RNA package (Hofacker, 2003) predict the secondary 

structure and calculate minimum free energy (MFE) for the reference and alternate 

sequences. The RNAfold mfold algorithm uses dynamic programming to predict an 

energetically stable model of an RNA molecule by minimizing its free energy. The energy 

model sums contributing free energies from loops to calculate the total free energy score of a 

secondary structure. 

Comparing the MFE (in kcal/mol) for reference and alternate sequences reveals if the 

mutation affects the secondary structure stability; a smaller MFE in the alternate sequence 

indicates greater secondary structure stability while a larger MFE indicates reduced 
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secondary structure stability. For example, a mutation in a terminator that reduces MFE of 

the predicted secondary structure suggests a higher likelihood of forming its stem-loop 

structure and stopping transcription. To offer context for the change in MFE, we simulate 

variations of the reference sequence and calculate the MFE for each variation. Variant 

sequences include single nucleotide deletions, insertions, and substitutions at each position. 

With insight into the energy landscape of the molecule subjected to small variations, we can 

compare the change in MFE caused by the mutation with other minor sequence changes. 

Calculating the Levenshtein distance (Levenshtein), or another metric such as a mutual 

information score, for aligned structures in dot-bracket notation captures the change in 

predicted secondary structure. 

A change in predicted secondary structure may impair or destroy the function of 

regulatory elements or disrupt protein folding. Thus, if the change in MFE exceeds a user-

defined cutoff (e.g., greater than 1 standard deviation from reference) or the Levenshtein 

distance exceeds a threshold, EVA assigns annotations a high priority. EVA assigns a low 

priority to annotations corresponding to mutations that result in small changes in MFE or do 

not significantly alter the predicted secondary structure. Because computational requirements 

for secondary structure prediction grow exponentially with sequence length, EVA limits 

predictions to sequences with length less than 1 kb, but users may override this setting or 

independently run predictions. If secondary structures are not predicted, EVA considers the 

priority to be unassigned. 

 

Binding Sites 

EVA searches relevant genomic feature sequences to ascertain if the alternate 

sequence of a mutated feature is a known binding site sequence in E. coli. This is performed 
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by querying the RegulonDB database for unique sequences with the same function (e.g., all 

σ28 promoters or all TFBS to which the transcription factor Fis is predicted to bind). If the 

alternate sequence is a known binding site, while the mutation may change binding site 

affinity, EVA predicts it to remain functional and assigns a low priority. Otherwise, EVA 

assigns the annotation a high priority. 

For σ70 promoters, the most prevalent class of promoters and the class associated with 

the primary sigma factor during exponential growth, EVA may perform an alternative 

analysis. Kinney et al. developed a procedure known as Sort-Seq to create a predictive map 

for the E. coli RNAP as they bind to DNA (Kinney, Murugan, Callan, & Cox). Their 

experiment characterized over 200,000 variations on a 75 bp region of the lac promoter and 

CRP binding site and authors inferred energy matrices that described the CRP-DNA and 

RNAP-DNA interactions. 

Despite the complexity of protein-DNA interactions, it has been shown that a 

sequence-dependent linear model sufficiently describes binding energy for DNA-protein 

interactions (Benos). Each base in the DNA sequence is modeled as having an independent 

contribution to overall binding affinity. Thus, given parameters defined in (Kinney et al.), the 

binding energy of RNAP to a specific DNA sequence is the sum of energy values from 

contributing bases along the sequence. 

EVA annotates the -10 and -35 elements of a promoter as separate genomic features, 

thus Sort-Seq scores are calculated independently for each promoter element. EVA only 

scores substitutions in promoter elements that are the same size as those in the Sort-Seq 

matrix, 6 bp, which is also the predominant promoter element size. A specific promoter 

element size is not a limitation of the Sort-Seq experimental method, and if alternate 
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sequence lengths were measured, EVA could appropriately penalize insertions and deletions 

inside promoter elements. For a substitution in a σ70 promoter feature that is 6 bp, EVA 

assesses if the Sort-Seq score for the reference (wild-type) promoter differs from the alternate 

promoter sequence resulting from a mutation. Following the assumption that gene expression 

is proportional to the probability that RNAP is bound, it follows that an increase in binding 

affinity will result in an increase in mRNA abundance and a decrease in binding affinity will 

result in a decrease in mRNA abundance. If there is no change, EVA classifies the annotation 

as low priority, otherwise, EVA assigns a high priority. 

 

Gene regulatory and metabolic network generation 

Annotations and mutation analysis only suggest direct effects of changes in the 

genome. EVA utilizes gene regulatory and metabolic network data to visualize downstream 

features to assess the indirect effects a mutated genomic feature can have on regulated 

features. EVA generates a biological network by retrieving downstream features of the 

mutated feature via transcription and translation regulation and signaling and metabolic 

pathways. The expanded collection of elements forms a gene regulatory and metabolic 

network. In this network, nodes are biological features such as genomic features, gene 

products, transcription factors, transcription units, reactions, and pathways (Figure 2.3). 

Directional edges denote interactions such as transcription regulation, translation regulation, 

and catalysis or relationships such as a gene encoding a protein, a transcription unit 

comprising genes, or a reaction belonging to a pathway. Clustered nodes can show 

relationships between mutations and biological systems relevant to organism fitness. 
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Figure 2.3  Combined gene regulatory and metabolic network structure 

Nodes representing regulators that map to absolute positions on the genome are represented 
in rectangles (e.g., promoters, terminators). Genes are represented by ovals, transcription 
units (TU) by parallelograms, gene products by diamonds, reactions (RXN) by triangles, and 
pathways (PWY) by hexagrams. Mutations are annotated with operons only if no other 
annotation is available. The operon region spans the transcription units as well as regulators 
of the transcription units. Directed edges link nodes based on regulatory activities, 
transcription, translation, and enzymatic activity. Gene regulatory data are obtained from 
the RegulonDB database and reaction and pathway data, shaded in the figure, are obtained 
from EcoCyc. The default EVA network bypasses TU features and connects regulators 
directly to genes. TF and sRNA nodes bypass binding sites in favor of edges to regulated 
genes. TFBS and sRNA BS are only represented if they have an associated mutation. 

 

For network construction, the default behavior is to convert annotations into a set of 

genomic features, each with an associated list of strains. When a user submits more than one 

strain for analysis, EVA ignores features that contain mutations in all strains during network 

construction. This is done to eliminate background variations from the network for strains 

highly similar to E. coli K-12 MG1655 and variations propagated from ancestral strains. 
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EVA additionally gives an option to produce networks for each derivative sample with 

variations common to ancestral strains removed. 

For each genomic feature, EVA creates a seed node representing the feature and 

initializes a branch, a directed, rooted network which may contain cycles, with the seed node 

as the root. To build the branch, EVA adds outward edges and nodes recursively until a user-

defined number of transcription and/or translation regulation steps, n, is reached (default n = 

1). Network construction does not penalize other types edges (i.e., relationship designations 

between nodes, such as a reaction belonging to a pathway) in this process. If a node is a 

regulator, biological features controlled by the regulator and interaction edges are added to 

the network. If the node is a gene, the gene product, associated enzymatic reactions and 

associated biological pathways are added to the network along with appropriate edges. If the 

node is a transcription unit, genes within the transcription unit are added to the network with 

edges connecting the transcription unit to the genes. This process continues up to n regulation 

steps. 

EVA constructs a branch for each genomic feature with one or more associated 

mutations. Finally, EVA merges all branches into a single network that represents mutated 

elements and their downstream features. EVA, by default, will generate a network that 

merges some linear relationships to reduce network size, however an option to represent all 

features is available. In addition, EVA produces two alternative networks to aid in biological 

interpretation: a mutation interaction network, and a shortest-paths network. The default 

network produced by EVA contains all biological features that can be reached within n 

regulation steps of a variant genomic feature, where n is a parameter specified by the user at 
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runtime. This network represents all potential downstream biological features that one or 

more mutations may affect and which may contribute to the phenotype of a derivative strain. 

The mutation interaction network is a subset of the default network formed of all 

paths from seeds to nodes reachable by two or more seeds. Thus, leaf nodes and most internal 

nodes are biological features that multiple mutations may affect indirectly. While mutations 

may individually yield a specific phenotype, this network can reveal potential interactions 

among mutations which could be synergistic, additive, or antagonistic. The shortest-paths 

network is a minimal representation of potential interactions among seeds. EVA constructs 

this network from all shortest paths, measured by the number of edges, from pairs of seed 

nodes to common nodes among branches. This visualization offers a minimal summary of 

EVA results which diminishes contributions of large regulators, such as transcription factors, 

which can overwhelm the network. Every network depicts all seed nodes even if they are 

isolated with degree zero. A single node attribute file may be used for all representations. 

EVA writes attributes and network files to files that can be imported into Cytoscape 

(Shannon, 2003) for visualization. A Cytoscape style has also made available with EVA. 

 

Software implementation 

The EVA core software was developed in Java. A local copy of RegulonDB with 

supplemental tables utilizing metabolic network information from EcoCyc was used. A 

PROVEAN library for E. coli genes was created for faster mutation analysis. Source code is 

available under an open source license at https://github.com/eboggess/EVA. 
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Results 

For the following experiments, short read data alignment to E. coli K-12 MG1655 

(U00096.3) and SNP-calling was performed using Breseq 0.31.0 (Deatherage & Barrick) 

with Bowtie2 2.3.2 (Langmead & Salzberg) and R 3.4.1. A local installation of RegulonDB 

9.4 was used to annotate mutations and retrieve biological feature interactions for network 

construction. A local copy of a supplemental database derived from EcoCyc 21.0 was used to 

incorporate reaction and pathway data into biological networks. Secondary structure analysis 

was performed with the Vienna RNA package 2.3.2 and amino acid sequence variations were 

score using Provean 1.1.5 with CD-HIT 4.6.4 and NCBI blast 2.4.0+. All ancestral and 

derivative strain mutation data was submitted to EVA as Genome Diff files and default 

options were used in the analyses. 

 

Antibiotic resistance in E. coli 

This section compares the genomic mutations identified and analyzed in work by 

Wang et al. (Wang et al.) with the expanded analysis provided by EVA. In the metabolic 

evolution experiment performed by Wang et al., E. coli K-12 MG1655 was used as the parent 

strain and exposed to antibiotics with the goal of generating a strain that exhibits antibiotic 

tolerance and identifying mechanisms of drug resistance. Fifty parallel populations of the 

ancestral strain were exposed to antibiotics Ciprofloxacin (Cpr), Neomycin (NeoB), a Cpr-

Neo hybrid (Hyb), a Cpr/NeoB equipolar mixture (EqP), and a Cpr/NeoB equimolar mixture 

(EqM). Four parallel populations were grown with no evolutionary pressure as a control 

(Ctrl). At the conclusion of the experiment, genome sequencing was performed, short read 

data were aligned to the E. coli K-12 MG1655 (U00096.2) genome (Riley) with Bowtie2, 
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and mutations were predicted using SAMtools and Dindel (Albers et al.). One hundred 

eighty-four unique mutations corresponding to 93 genes and 5 tRNAs were predicted in one 

or more strains evolved for drug resistance and 6 mutations were annotated with the nearest 

gene. 

We applied the EVA pipeline to the genomic data from Wang et al., beginning with 

short-read alignment and SNP-calling with Breseq. Raw SNP-calling results include 

instances where only reads aligned in one direction support an alternate base call. This may 

be an artifact from errors in library preparation or sequencing, or an error in the alignment 

process (Guo et al.). Breseq uses a Fisher's exact test for biased strand distribution and a 

Kolmogorov-Smirnov test for lower quality reads supporting the alternate sequence to reduce 

false positive SNP calls. Our analysis using Breseq can detect more complex variations, such 

as large deletions, and is more accurate in more accurate in finding mutations. In total, 

Breseq predicts 232 unique mutations among the 54 samples, including 182 of the mutations 

predicted by Wang et al. The 50 new mutations correspond primarily to large insertions and 

deletions the earlier method may not detect, but 16 are previously unreported single 

nucleotide variants (SNV) and small insertions or deletions (less than 10 bp). Breseq detects 

the reported 2 bp insertion in yqgE but excludes it from analysis due to low-quality base calls 

for the alternate sequence and strand bias in the alignment. Discrepancies exist between the 

results, including a predicted 7 bp insertion after dnaG not in our results. Wang et al. predict 

a 3 bp deletion (TGG) at relative position 1787 of 2145 in pta, but our results instead have a 

3 bp deletion in pta at relative position 1789. Finally, our results do not have the SNV in fusA 

that Wang et al. predicts for six samples in the NeoB-08 sample. 
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Breseq Genome Diff output files for the ancestral and derivative strains were 

provided to EVA as input for mutation analysis. EVA produces 266 annotations for the 

predicted mutations, meaning that some mutations spanned more than one genomic feature. 

EVA reports 17 annotations that correspond to regulators not represented in Breseq output 

and annotations corresponding to insertion sequences, pseudo genes, and operons for five 

mutations. Table 2.2 provides a summary of selected results and full details are available in 

an additional file. 

Table 2.2  A selection of previously unreported predicted mutations in antibiotic-resistant 
strains 

Annotations are listed alphabetically by name along with the corresponding antibiotic 
treatment(s) and assigned priority are provided for each annotation. The acrA attenuator, 
gntR terminator, sulA promoter, and LexA binding site are EVA annotations not provided by 
Breseq output. 

Annotation Antibiotic(s) Priority 
acrA attenuator HyB High 
cra Hyb High 
cyoE-ampG NeoB  High 
emrR  EqM  High 
fre  NeoB  High 
ftsZ  EqM  Low 
gntR terminator EqM Low 
icd  Cpr, EqM, Hyb Low 
lexA HyB High 
nikA  EqM  High 
nuoC  NeoB  High 
rhsC  EqP  Low 
rimK, ybjN, potF, potG, potH, potI Cpr  High 
rrlC  EqP  Undefined 
sucD  HyB  High 
sulAp / LexA TFBS EqP Undefined 
tamA-tamB EqP  High 
tufB  EqP  High 
waaQ Hyb, EqP  High 
yaiU-[yaiW]  NeoB  High 
yqjI  EqM  High 
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EVA excluded genomic features with any mutation in all 54 samples from network 

construction. The gene regulatory and metabolic network for the experiment is built from 

seed nodes that represent the remaining 164 features. Network summary statistics are 

provided in Error! Reference source not found.. Network size was reduced by more than 

half in the mutation interaction network, primarily due to the exclusion of the LexA regulon. 

Cytoscape was used to visualize the simplified shortest-paths network shown in Figure 2.4A. 

Table 2.3  Summary of nodes and edges in biological networks generated by EVA. 

The default network includes all nodes and edges. The mutation interaction is a subset of the 
default network comprised of nodes representing mutated features and edges that connect 
them. The shortest path network further reduces the number of nodes and edges by including 
only the shortest paths between mutated features. 

Network Nodes Edges 
Antibiotic-resistant (161 
seed nodes) 

    

Default 1122 1329 
Mutation interaction 503 621 
Shortest Path 325 270 

Benzoate tolerant (104 seed 
nodes) 

    

Default 797 1008 
Mutation Interaction 437 598 
Shortest path 234 200 
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Figure 2.4  Network visualization of mutations in antibiotic resistant strains 

A. Cytoscape visualization of the EVA shortest-paths network (325 nodes, 270 edges) derived 
from predicted variant genomic features in antibiotic-resistant strains. Red indicates seed 
nodes representing features assigned a high priority, orange indicates unassigned priority, 
and green indicates low priority. The network includes up to 1 level of transcription or 
translation regulation downstream of a mutated feature. B. The largest cluster in the 
antibiotic resistance network is the Cra regulon, marRAB operon, and the multidrug effux 
system. C. A selection from the cluster in B that feature the LexA regulon and SOS response 
system. This subset is connected to the remainder of the cluster in B via the peptidoglycan 
maturation pathway node. 
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Cra regulon, marRAB operon, and multidrug efflux system 

Breseq detected evidence of an unreported 12 bp deletion within the cra gene at 

position 88,827 in the Hyb-10 sample. The predicted mutation results in an out of frame 

deletion beginning at amino acid position 267 of 335 in Cra and is represented in HGVS-

style notation as D267_I270del. Due to the severity of the deletion (Provean score -15.83), 

EVA predicts the mutation to be damaging to Cra, a transcriptional dual regulator. 

Examining the gene regulatory network shows Cra is a predicted repressor of the marRAB 

operon. Previously, Wang, et al. hypothesized that the hybrid drug could evade the marRAB 

drug efflux, which would make it unique among quinolone drugs. While the predicted cra 

mutation occurs in only one hybrid strain, PCR verification of the deletion and measuring 

transcript abundance of marRAB genes could reveal if regulation affects the operon and if 

this is a strategy for hybrid drug resistance. 

Examination of all predicted mutations in the gene regulatory and metabolic network 

illustrates how both Cra and AcrR, a marRAB repressor corresponding to mutations reported 

by Wang et al. regulate the marRAB operon. Instances of mutations in acrR appear in all 

strains except those evolved for NeoB resistance. EVA provides a second annotation for a 

SNV within acrR that corresponds to an acrA attenuator (terminator) (C to A at position 

485,010 in strain Hyb-09). The MFEs of the reference and alternate sequences sequence -

5.70 and -0.30 kcal/mol, respectively, showing a lower likelihood for the terminator structure 

to form which would result in an increase in acrA transcription. Provean predicts the 

mutation in AcrR to be damaging with a score of -4.60. Damaged AcrR could result in 

weaker repression of the marRAB operon and increased abundance of the marRAB transcript. 

Because this mutation appears in many strains, including one Hyb strain, there is strong 

support that altering the AcrR transcription factor is a strategy for antibiotic resistance. 
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Network visualization in Cytoscape shows the relationship between these regulators 

and two other multidrug resistance genes; mprA and emrY (Figure 2.4B). The emrY mutation, 

which is silent, was previously identified in EqP-02, but the 69 bp deletion that affects mprA 

(also known as emrR) had not been reported. MprA is a transcriptional repressor that is 

predicted to regulate the acrAB operon. Damage to MprA could decrease repression of acrAB 

and subsequently increase drug transmembrane transport. 

 

LexA regulon 

LexA is a transcriptional repressor responsible for regulating the SOS response, the 

cellular response to DNA damage or inhibition of DNA replication (Janion). EVA assigns the 

point mutation Wang et al. reported within lexA a high priority based on the Provean score of 

-7.63 which predicts the corresponding P107Q amino acid variation to be damaging. The 

SOS response can promote mutations, which increases the opportunity to acquire antibiotic 

resistance (Cirz et al.). By damaging the LexA repressor, the SOS pathway may be de-

repressed, enabling increased transcription of error-prone SOS-regulated polymerases. 

In addition to the LexA mutation, which EVA predicts to be damaging with a 

Provean score of -7.61, a previously unreported SNV in EqP-09 (A to G at position 

1,020,956) corresponds to both the -10 element of the sulA promoter and a LexA binding site 

(Figure 2.4C), which acts as a transcriptional repressor for sulA. SulA is a cell division 

inhibitor which has been shown to be involved in stress-induced point mutations (McKenzie, 

Harris, Lee, & Rosenberg). 

An unreported 12 bp deletion inside ftsZ in EqM-06 results in an amino acid sequence 

change described by EVA as P346_Q349del. FtsZ, which is essential for cell division, is a 

known antibiotic target and is inhibited by SulA (Cordell, Robinson, & Lowe). Despite 
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deleting four amino acids from FtsZ, Provean predicts the mutation to be tolerated with a 

score of -0.599 and EVA assigns a low priority. While predicted mutations in LexA and its 

regulon occur in distinct strains adapted for under different conditions, the SOS response 

system may be a relevant antibiotic resistance strategy for both drug mixtures and the hybrid 

drug. Further experimentation is necessary to examine the variant sulA promoter strength and 

changes in sulA and ftsZ transcripts and discern relevance to fitness. 

 

Benzoate tolerance in E. coli 

In this section, we compare genomic mutations identified and for benzoate-adapted 

strains (Creamer et al.) with the analysis provided by EVA. The benzoate evolution 

experiment performed by Creamer et al., used E. coli W3110 as the parental strain and 24 

cultures were subjected to increasing benzoate concentrations up to 20 mM. The Illumina 

MiSeq platform was used for genomic sequencing of 16 benzoate-evolved strains and the 

parent strain. Creamer et al. used Breseq to assemble short-reads and identify of genomic 

variants. 110 mutations were predicted in one or more evolved strain, but not the parent 

strain. 

For our analysis, we repeated the short-read assembly and annotation using Breseq 

and used E. coli K-12 MG1655 U00096.3 as the reference genome for compatibility with 

EVA. Because the strains are highly similar, the 136 mutations predicted by Breseq are 

generally consistent with those reported by Creamer et al., but with MG1655 genome 

position coordinates. From these 136 mutations, EVA finds 188 corresponding genomic 

features, of which 104 features are not mutated in all strains. 

In addition to results reported by Creamer et al., EVA annotates nine mutations 

previously only recognized as intergenic and adds regulatory feature annotations to three 
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reported gene mutations (Table 2.4). The network generated by EVA links the missense 

mutation in rob with the marRAB operon which is deleted from the genome in several strains. 

Genes cpxA, emrY, and emrA appear separately as they are part of a signal transduction 

system and efflux pumps. The Provean score for the L191M amino acid mutation in MdtA 

does not meet the minimum criteria and EVA considers it a low priority mutation. For one 

mutation in gene fdnG, a Provean analysis was not performed due to a selenocysteine site 

which appears as an internal stop codon during translation; a scenario for which EVA is 

unable to provide analysis. 

Creamer et al. noted there must be factors besides those reported which are 

responsible for fitness advantage and chloramphenicol sensitivity based on their strain 

characterizations. Specifically, the authors hypothesize that the C3-1 genome may have 

defects in other multidrug resistance genes, G5-2 must have unknown mutations that 

contribute to chloramphenicol sensitivity and benzoate fitness, and E1-1 maintains 

chloramphenicol resistance, unlike other strains. To further investigate variations in the 

phenotype among evolved strains, we examine the predicted mutations in the combined gene 

regulatory and metabolic network representation generated by EVA. 
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Table 2.4  Previously reported intergenic mutations in one or more benzoate-tolerant strains for which EVA provides annotations. 

Mutations are ordered by genome position. 

Mutation Previously reported annotation EVA annotation Priority 

29617, A → G intergenic (+422/-34), dapB → / → carA ArgR TFBS (repressor) Undefined 

573671, T → A intergenic (+109/+289), ybcQ → / ← insH ipeX Undefined 

1337160, G → A intergenic (+617/-385) cysB → / → acnA yciX Low 

1553904, 2 bp → CT intergenic (+199/+207), fdnI → / ← yddM C0362 Low 

1553926, T → C intergenic (+199/+207), fdnI → / ← yddM C0362 Low 

1565001, A → G intergenic (-211/+47), ddpX ← / ← dos Rho-independent terminator  Low 

1908956, IS5 (–) +4 bp coding (191-194/210 nt), cspC ← rlmA Attenuator (anti-terminator) High 

1908956, IS5 (–) +4 bp coding (191-194/210 nt), cspC ← Riboswitch High 

1909258, IS1 (+) +9 bp coding (40-48/144 nt), yobF ← Riboswitch High 

2441649, C → T intergenic (-44/-115), fabB ← / → trmC fabBp Undefined 

4218986, IS5 (–) +4 bp intergenic (+187/-79), metA → / → aceB aceBp High 

4470927, G → A intergenic (-67/+52), treB ← / ← treR treB Attenuator (terminator) Undefined 

4639891, A → G S34P (TCC→CCC)  rob ← (in addition to rob) creAp Low 
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Several regulators are predicted to contain mutations, including a dosCP terminator, 

fabB promoter, and aceBAK promoter. The point mutation in the dosCP terminator in the E1-

1 clade is interesting because it is upstream of ddpX, a D-Ala-D-Ala dipeptidase involved in 

resistance to antibiotic vancomycin (Lessard & Walsh). However, the resulting sequence 

change does not affect MFE of the predicted secondary structure and transcriptomic analysis 

of ddpX is required to determine if the mutation has any effect. The point mutation in the 

fabB -10 promoter element in all strains in the G5-2 clade results in a more favorable 

sequence for σ70 binding. An insertion sequence is detected inside the -10 promoter element 

for aceBAK in the E1-1 clades. Separately, a point mutation that is predicted to be damaging 

is found in aceA in all strains in the C3-1 clades (Figure 2.5). These mutations may represent 

different strategies to manipulate glyoxylate metabolism in benzoate adapted strains. 

EVA annotates a mutation previously reported in an intergenic region with the small 

RNA ipeX. The point mutation in ipeX in the A5-1 clades results in a higher MFE and thus a 

less favorable secondary structure. The small RNA ipeX has been shown to inhibit expression 

of outer membrane porins ompC and ompF through post-transcriptional modification 

(Castillo-Keller, Vuong, & Misra). 

EVA identifies a relationship between previously reported mutations in the genes add 

and deoD. The gene add contains a frameshift mutation in all strains in the G5-2 clade and 

deoD contains a predicted damaging SNP in G5-1. These genes are connected by the purine 

salvage pathway (Figure 2.5). Separately, strains in the E1-1 clade contain a mutation 

predicted to be damaging in the apt gene, which encodes another purine salvage enzyme. 

Purine metabolism is affected by antibiotics and has been proposed as a drug target for 

resistant bacteria (Møller et al.). Network statistics are provided in Table 2.3. 
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Figure 2.5  Network visualization of mutations in benzoate-adapted strains 

The shortest-paths network (234 nodes, 200 edges) generated by EVA analysis of benzoate-
adapted strains. Nodes are highlighted by priority; high priority: red, unassigned: orange, 
low: green. The largest cluster in the shortest-paths network (125 nodes, 167 edges) contains 
the mutated transcription factor Rob and mutated the fabB -10 promoter element which have 
implications for fatty acid biosynthesis. Also represented in this cluster is the destruction of 
the aceBAK -10 promoter element in the E1-1 clade and a predicted damaging mutation in 
aceA in the C3-1 clade. 
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Discussion 

Most existing methods for mutation analysis are limited to genes and require 

researchers to convert nucleotide variations to amino acid mutations. Additionally, mutations 

in a single strain are analyzed independently, making the investigation of mutation 

interactions a difficult task. Our approach accepts multiple formats and mutation information 

for one or more strains, automates a significant portion of analysis, and generates a network 

of mutations and their downstream biological features. Because direct mutation interactions 

and those occurring through regulation can be observed in EVA networks, our method can 

provide insight into underlying mechanisms affected by genomic mutations and support 

researchers in characterizing variant strains. 

There remain many uncharacterized and poorly understood genomic features which 

could, in the future, be incorporated into the EVA pipeline. For example, when examining 

binding affinity of promoter sequences, we align a specific sequence to the lac promoter to 

use as a model. While the effect of gaps in the spacer region has been studied elsewhere, the 

energy matrix we employ as a scoring scheme does not address insertions and deletions. A 

meaningful penalty for gaps is not immediately clear as there is an absence of experimental 

data, however, this is not a limitation of the method presented by Kinney et al., and an 

expanded dataset could be included in the analysis. Strategies to analyze intergenic regions 

themselves, such as the distance between promoter elements could also be implemented in 

EVA. 

Additionally, work has been done to characterize RBSs and RBS-promoter pairs in E. 

coli (Kosuri et al.; Na, Lee, & Lee; Salis, Mirsky, & Voigt) and effects on gene expression 

from 5-UTR and sRNA binding variants have been examined (Holmqvist, Reimegard, & 

Wagner). As more libraries of binding site variants are generated and associated mRNA and 
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protein abundances quantified, more energy matrices will be available that will reveal how 

sequence variations affect phenotype. In the absence of binding site libraries and associated 

expression data, alignments of known binding site sequences to form positional weight 

matrixes could reveal acceptable variants similar to the method SIFT uses for coding regions. 

For TFBSs, motif data is retrieved from public databases (e.g., CollectTF (Kilic, White, 

Sagitova, Cornish, & Erill) and PRODORIC (Münch et al.)). Features such as Rho utilization 

sites are not currently available in public databases for E. coli, but as the Rho termination 

factor is believed to be responsible for terminating 20-50% of all mRNA synthesis in the 

organism (Koslover, Fazal, Mooney, Landick, & Block), this feature data would be a 

valuable addition to EVA. For mutated genes, mechanisms of transcription and translation 

efficiency, such as codon bias (Welch et al.) may help better understand silent mutations. 

Additionally, the Provean threshold could be recalibrated with the latest NCBI non-redundant 

database and specifically for bacteria. 

In order to develop phenotype predictions, an expanded gene list including genes in 

the biological networks generated by EVA can be annotated with Gene Ontology (GO) terms  

(Ashburner et al.). This may be performed for all samples to search for overall evolutionary 

trends among biological replicates or for individual samples to examine a specific phenotype. 

While any single variation may be relevant to organism fitness, enriched GO terms from the 

expanded gene list can indicate importance to organism fitness and may capture biological 

knowledge of gene functions not represented in the EVA networks. However, as mutations in 

regulatory elements and genes that encode transcription factors will add additional, and 

sometimes functionally-related, genes into the EVA network, analysis for overrepresented 

GO terms could benefit from giving these downstream genes less weight. 
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One shortcoming of the per-mutation approach employed by EVA during the 

annotation step is the inability to interpret mutations in the context of one another. For 

example, a single genomic feature may contain multiple predicted mutations, but EVA would 

evaluate these separately. Future versions may consider such cases for improved 

interpretation. Another enhancement could include the integration of transcriptomic data or 

other omics data in the biological network that EVA generates. 

 

Conclusions 

EVA provides a framework to aid scientists in interpreting genetic variations that 

occur in metabolic evolution experiments by expanding annotations, prioritizing mutations. 

Indirect effects of mutations can be found in the biological network created by EVA that 

contains mutated features, downstream elements, and their interactions. It is important to 

note that we do not seek to quantify the effects of mutations but to offer a method of 

interpretation and constructive ranking to promote relevant laboratory experiments to further 

characterize mutation effects. EVA highlights the critical role of regulators and the need to 

include them in evolutionary experiment analyses. Software automation of mutation analysis 

in EVA improves upon what is generally a manual process. EVA is a principled approach to 

mutation analysis that can be refined as mechanisms of regulation are better understood and 

researchers perform more high-throughput and quantitative experiments to characterize 

regulatory sequences. 
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Abstract 

Metabolic evolution is a valuable strategy for overcoming toxicity of target 

biorenwable chemicals, however reverse engineering of evolved strains is necessary to 

understand how the tolerance phenotype is achieved. Whole genome sequencing and 

mutation analysis are required to identify the genomic changes that occur during an evolution 

experiment and characterization of both single and multiple mutations is necessary to 

understand their individual and combined contributions to phenotype. Here, we analyze the 

genome of Escherichia coli evolved for improved exogenous octanoic acid tolerance and 

reconstruct mutations in the parent strain to determine their contribution to phenotype. We 

identified mutations in rpoC, basR, and basS in strains evolved for tolerance and an insertion 

sequence in waaG in the parent strain that was lost during the course of the experiment, 

restoring function. We find the repair of waaG to reduce the amount of extracellular 

polysaccharides produced by the cells as well as decrease leakage and improve the specific 

growth rate in an octanoic acid challenge experiment. The rpoC mutation further improves 

tolerance after waaG is repaired and the mutations in basS and basR are found to improve 
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cell membrane integrity. These results highlight strategies to overcome membrane damage as 

a result of octanoic acid toxicity as well as the importance of studying synergistic effects 

among mutations found in evolved strains. 

 

Introduction 

Fatty acids are of great importance in the industrial field (Jarboe, Royce, & Liu, 

2013) due to their wide applications as multifunctional precursors to produce various fuels, 

chemicals, and textile fibers (Dellomonaco, Fava, & Gonzalez, 2010; Perez, Richter, Loftus, 

& Angenent, 2013; Zhang, Yang, Yang, & Ma, 2009). So far, the production of industrial 

fatty acids relies heavily on a nonrenewable and unsustainable resource, petroleum 

(Dellomonaco et al., 2010; C. Zhang et al., 2009), which can lead to severe environmental, 

political, and economic consequences (Stephanopoulos, 2007). Therefore, it is necessary to 

develop new pathways to produce fatty acids using renewable and sustainable carbon 

feedstocks. In this respect, biocatalysts are attractive and promising. They have already been 

broadly applied to biorenewable industries for the production of various chemicals, such as 

ethanol, glycerol, 1, 3-propanediol, and lactic acid (Nikolau, Perera, Brachova, & Shanks, 

2008). Moreover, it is potentially feasible for researchers to engineer organisms to obtain 

target biocatalysts with significant ability to produce fatty acids by utilizing microorganisms 

that can naturally synthesize fatty acids with 12-18 carbons, the primary components of the 

cell membrane (Nikolau et al., 2008). So far, remarkable progress has been achieved by 

researchers for the realization of the production of fatty acids by biocatalysts on a 

commercial level (Jarboe, Liu, & Royce, 2011; Lennen & Pfleger, 2012; L. A. Royce et al., 

2014; L. A. Royce, Liu, Stebbins, Hanson, & Jarboe, 2013; Volker et al., 2014; Wu, 

Karanjikar, & San, 2014; Wu, Lee, Karanjikar, & San, 2014). 
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Researchers have found that fatty acids produced by microbes are toxic to the 

microbes themselves at concentrations below the desired yield and titer (Jarboe et al., 2013; 

Lennen et al., 2011; Volker et al., 2014), just like other attractive biofuels and biorenewable 

chemicals (Baer, Blaschek, & Smith, 1987; Huffer, Roche, Blanch, & Clark, 2012; Yomano, 

York, & Ingram, 1998). This is a major obstacle for boosting the yield and titer of fatty acids 

(Jarboe et al., 2013). The mechanism of the toxicity of fatty acid to Escherichia coli has been 

studied, and it was reported that fatty acids can lower the cell viability by damaging the cell 

membrane and decreasing intracellular pH (Jarboe et al., 2013; Lennen et al., 2011; L. A. 

Royce et al., 2014; L. A. Royce et al., 2013). Several groups have tried to overcome fatty 

acid toxicity in E. coli by employing different approaches. One strategy was to restore the 

cell membrane to improve cell viability by over-expressing the fatty acid biosynthesis 

regulator, fabR, and introducing two foreign acyl-ACP thioesterase genes in E. coli. 

However, the engineered E. coli did not show improved fatty acid productivity (Lennen et 

al., 2011; Lennen & Pfleger, 2013). Another approach was to delete the acyl-ACP synthase 

(aas) gene in E. coli, which resulted a decreased percentage of medium chain fatty acids in 

the membrane, increased tolerance to medium chain fatty acids, and a slightly improved yield 

of fatty acids (Sherkhanov, Korman, & Bowie, 2014). Finally, metabolic evolution was 

employed as a strategy to increase tolerance to short chain fatty acids (SCFAs) (L. A. Royce 

et al., 2013). The evolved strain resulting from the short-term adaptation experiment exhibits 

an increased SCFA tolerance phenotype and improved production titer of the SCFAs (L. A. 

Royce et al., 2015).  

Reverse engineering aims to both identify mutations that contribute to the phenotype 

of evolved strains and understand why these mutations are beneficial. It is a powerful tool to 
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elucidate the mechanisms behind the evolution experiments, which can be used as design 

strategies for improving tolerance and production in other engineered strains. Identifying and 

understanding the key mutations that support the evolved phenotype requires knowledge of 

what mutations occurred during the evolutionary engineering. Whole-genome sequencing is 

invaluable for finding genomic mutations (L. Royce, Boggess, Jin, Dickerson, & Jarboe, 

2013) and transcriptome analysis and metabolic flux analysis have been proven useful for 

revealing the underlying mechanisms of the mutations (Elliot N. Miller et al., 2009; E. N. 

Miller et al., 2009). After mutations are found, the next steps are to explore which mutations 

promote fitness, the mechanisms of how the tolerance to inhibitors has increased, and the 

functions of poorly-characterized enzymes and pathways involved in the evolved phenotype. 

For instance, in an isobutanol tolerance study, five mutations were identified as primarily 

responsible for increased tolerance, and glucosamine-6-phosphate was identified as an 

important metabolite for isobutanol tolerance in E. coli (Atsumi et al., 2010). Increasing 

furfural tolerance was achieved by silencing the NADPH-dependent oxidoreductase gene 

(yqhD and dkgA) in E. coli (E. N. Miller et al., 2009). The new glucose uptake system and 

mechanism of increased ATP level in the evolved strain has been well studied, which were 

the key mechanisms of improving succinate production in E. coli (X. Zhang et al., 2009). 

In this work, we applied reverse engineering to study E. coli strains evolved for 

increased octanoic acid (C8) tolerance. To understand the genotype-phenotype relationship, 

the whole-genome sequencing of the evolved and parent strains was performed. The parent 

strain, ML115, is a MG1655 derivative by knocking out three genes and adding an antibiotic 

marker (∆fadD, ∆poxB, and ∆ackA-pta:cmR) in order to inactivate the fatty acid beta-

oxidation pathway and two acetate production pathways. The order in which mutations were 
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acquired was also determined in this work. Reconstructed strains with both single and 

multiple mutations were used in phenotypic characterization experiments in order to identify 

individual and combined contributions to fitness. 

 

Materials and methods 

 

Strains, plasmids and bacterial cultivation 

All bacterial strains and plasmids used in this study are listed in Table 3.1 and Table 

3.2. E. coli DH5α was used as a cloning strain, while the parent strain E. coli ML115, and the 

evolved strain LAR1 were used in the genome modification procedures. All E. coli strains 

were grown overnight at 37°C with 250 rpm orbital shanking in 25 mL of MOPS minimal 

media (Wilmes-Riesenberg & Wanner, 1992) with 2.0% (w/v) glucose and chloramphenicol 

(35 µg/mL, if needed) in 250 mL baffled flasks. The overnight cultures were diluted to 0.05 

of optical density at 550 nm (OD550) for the octanoic acid tolerance test or diluted to 0.1 at 

OD550 for testing membrane leakage, membrane fluidity, cell hydrophobicity, and cell 

membrane composition. E. coli transformants were grown in media at 37°C, or 30°C, with 

chloramphenicol (35 mg/L), ampicillin (100 mg/L), kanamycin (50 mg/L), or spectinomycin 

(50 mg/L) as needed.
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Table 3.1  Plasmids used in this study. 

Plasmids Description Reference 
pKD4 FRT-Kan-FRT cassette template, AmpR, KmR  (Datsenko & Wanner, 2000) 
pKD46 λ Red recombinase expression plasmid, Ampr (Datsenko & Wanner, 2000) 
pCP20 FLP recombinase expression, AmpR, CmR (Datsenko & Wanner, 2000) 
pUC57-rpoC-A rpoC-A-FRT-Kan-FRT cassette template, KmR This study 
pUC57-rpoC-C rpoC-C-FRT-Kan-FRE cassette template, KmR This study 
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Table 3.2  Strains used in this study. 

All strains contain the CmR chloramphenicol resistance gene. 

Strain 
Mutations 

Editing Method Reference waaG IS 
removed rpoC basR basS 

ML115 
 

    (L. A. Royce et al., 2015) 
LAR1 * * *   (L. A. Royce et al., 2015) 
LAR2 * *  *  (L. A. Royce et al., 2015) 
ML115+waaGInD *    CRISPR/Cas9 This study 
ML115+rpoC*  *   Lambda Red This study 
ML115+basR* 

 
 *  CRISPR/Cas9 This study 

ML115+basS* 
 

  * Lambda Red This study 
ML115+waaGInD+rpoC* * *   CRISPR/Cas9 This study 
ML115+waaGInD+basR* *  *  CRISPR/Cas9 This study 
ML115+waaGInD+basS* *   * CRISPR/Cas9 This study 
ML115+rpoC*+basR* 

 
* *  CRISPR/Cas9 This study 

ML115+basR*+basS* 
 

 * * CRISPR/Cas9 This study 
ML115+waaGInD+rpoC*+basR* * * *  CRISPR/Cas9 This study 
ML115+waaGInD+basR*+basS* *  * * CRISPR/Cas9 This study 
LAR1+rpoC *  *  CRISPR/Cas9 This study 
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Whole-genome sequencing and mutation verification 

The genomic DNA of ML115, LAR1 and LAR2 was purified using the Qiagen Blood 

and Tissue kit. The Illumina Genome Analyzer II platform was used for high throughput 

sequencing with 77 bp (base pair) paired-end reads as described (L. Royce et al., 2013). All 

samples were run on a single lane. Breseq version 0.31.0, a pipeline for finding mutations in 

microbial genomes, was used to align short read data and predict mutations (Deatherage & 

Barrick, 2014). Bowtie2 version 2.3.3 (Langmead & Salzberg, 2012) and R version 3.4.1 (R 

Core Team, 2018) software were used in the breseq pipeline. The U00096.3 genome for E. 

coli K-12 MG1655 (Blattner et al., 1997; Hayashi et al., 2006) was used as the reference 

sequence to which short-read data from both parent and evolved strains were aligned. 

87.8,%, 91.0%, and 87.3% of reads were successfully aligned to the reference sequence for 

ML115, LAR1, and LAR2, respectively. Previous genomic interventions (∆fadD, ∆poxB, and 

∆ackA-pta:cmR) present in ML115 were verified as regions of missing coverage. 

When considering predicted mutations, we followed the filters recommended by 

breseq to reduce the number of false positives. A Fisher’s exact test was performed for the 

distribution of reads aligning in the forward and reverse direction for the reference and 

variant sequence. If the distribution skewed to favor alignment in one direction, this may 

indicate a sequencing error in reads on one strand. Additionally, a Kolmogorov-Smirnov test 

was performed to test if the base quality scores corresponding to variant sequences are lower 

than the quality scores corresponding to the reference sequence. 
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Genomic variations displaying neither strand bias nor lower quality scores compared to the 

reference sequence which are predicted in an evolved strain but not the parent strain (and 

vice versa) were selected as mutations of interest to be verified with polymerase chain 

reaction (PCR) and Sanger sequencing. 

Genes containing predicted genomic variations along with an additional 500 bp 

upstream and downstream of the coding region were sequenced in order to verify mutations. 

Target gene fragments were PCR amplified with Qiagen Taq PCR master mix, primers, and 

the genome of evolved strain was used as the template. All primers were designed by 

Primer3 software (Untergasser et al., 2012) and synthesized by Integrated DNA 

Technologies (IDT). The sizes of PCR products were initially examined on a 1% TAE 

agarose gel with a 1 Kb plus DNA ladder. Next, PCR products exhibiting the expected gene 

fragment size were purified by QIAquick PCR purification kits (Qiagen) and submitted to 

Iowa State University DNA facility for DNA sequencing. The sequencing results were 

aligned to the E. coli K-12 MG1655 genome using the online NCBI standard nucleotide 

BLAST software (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to confirm the mutations. 

Mutations were verified by repeating all steps above using the genome of evolved strain and 

parent strain separately as templates. 

 

PCR-restriction fragment length polymorphism (PCR-FRLP) 

We applied RCR-FRLP to determine the order of mutations in evolved strains, which 

use cells culture saved after every transfer during adaptive evolution as DNA template. For 

the mutation in rpoC (A1256C), the 660 bp DNA fragment which includes the mutant point 

was amplified by PCR with the primers rpoCCF, rpoCCR, and DreamTaq Green PCR master 

mix 2X (Thermo Fisher Scientific). The PCR products were purified by DNA Clean & 
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Concentration kit (Zymo). Approximately 10 µl of purified PCR products were digested with 

restriction enzyme BsaJI (New England Biolabs) according to the manufacturer’s instruction. 

The restriction fragments were separated on a 1% TAE agarose gel with 1 Kb plus DNA 

ladder. The pair of primers basRCF and basRCR, and restriction enzyme SfcI were used for 

basR mutation. The basSCF and basSCR primers, and restriction enzyme FatI were used for 

basS mutation. For the waaG mutation, only waaGCF and waaGCR primers were needed. 

 

Genomic manipulations  

All genomic manipulations were carried out using either lambda red recombinase 

system (Datsenko & Wanner, 2000) or CRISP-cas9 system (Jiang et al., 2015). For the 

lambda red recombinase system, E. coli strains were first transformed by electroporation to 

harvest the pKD46 plasmid, and then the lambda red recombinases were induced by adding 

L-arabinose (2 mM). The kanamycin resistance cassette was amplified from plasmid pKD4 

by PCR using primers with flanking homologous regions for the target gene, except the 

rpoC(1256A)+kan, and rpoC(1256C)+kan cassettes which were synthesized by GenScript 

company. The purified PCR products were transformed into the electro-competent E. coli 

cells harboring pKD46, and lambda red recombinases system was induced. The resulting 

kanamycin resistant colonies were screened for the successful gene replacement by the PCR 

amplification, restriction enzyme digestion, and DNA sequencing. The scarless CRISPR-

Cas9 approach was also applied to achieve gene replacement in parent and evolved strains. 

 

Octanoic acid tolerance test 

Octanoic acid tolerance was determined by measuring OD550 every hour. Overnight 

seed cultures were inoculated into 250 mL baffled flasks, which contained 25 mL MOPS 
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with 2.0% (w/v) dextrose and 10 mM octanoic acid (1.44 g/L) with an initial media pH of 7.0 

and an initial OD550 of 0.05. The control groups used the same culture without the addition of 

octanoic acid. The flasks were incubated in a rotary shaker at 200 rpm and 37°C. Cultures 

were taken and measured at OD550 every hour.  

 

Determination of fatty acid titers 

Fatty acid production was quantified by measuring total fatty acids via an Agilent 

6890 gas chromatograph coupled to an Agilent 5973 mass spectroscope (GC-MS) after fatty 

acid extraction and derivatization (Torella et al., 2013). Briefly, fatty acid extraction was 

done as follows: 1 mL culture was transferred into a 2 mL microcentrifuge tube, 125 µL 10% 

NaCl (w/v), 125 µL acetic acid, 20 µL internal standard (1 µg/µL C7, C11, C15 in ethanol), 

500 µL Ethyl Acetate was added subsequently. The mixture was vortexed 30 seconds and 

centrifuged at 16000 g for 10 minutes, then the 250 µL top layer, which contained free fatty 

acid, was transferred into a glass tube. For the fatty acid derivatization part, 2.25 mL 30:1 

EtOH: 37% HCl (v/v) was added into the glass tube from fatty acid extraction part, incubated 

at 55°C for 1 hour, then cooled to room temperature. After this, 1.25 mL ddH2O and 1.25 ml 

hexane was added followed by vortexed and centrifuged at 2,000 × g for 2 minutes. The top 

hexane layer was then analyzed by GC-MS using the following programs: the initial 

temperature was set at 50°C, holding for 1 minute, with the following temperature ramp: 

20°C/minute to 140°C, 4°C/minute to 220°C, and 5°C/minute to 280°C with 1 ml/minute 

helium carrier gas. The relative retention factor of C7/C11/C15 was used to adjust the 

relative amounts of the individual fatty acids analyzed. 
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Membrane characterization 

 

Membrane permeability 

The seed culture was inoculated into 250 mL baffled flasks with 25 mL MOPS media 

with 2.0% (w/v) glucose. The flasks were incubated in a rotary shaker at 250 rpm at 37°C. 

Cells were then harvested at mid-log phase (OD550 ≈ 1) followed by centrifugation at 4,500 × 

g and 22°C for 10 minutes. The cells were then treated with PBS with 10 mM octanoic acid 

at pH 7.0, incubated at 37°C for 1 hour along with a control group to which no octanoic acid 

was added. Subsequently, cells were centrifuged at 4,500 × g at 4°C for 10 minutes, washed 

twice with PBS (pH 7.0), and resuspended in PBS at a final OD550 = 1. Then, 100 µL 

resuspended cell solution was diluted with 900 µL PBS. Cells with damaged membrane were 

stained by the addition of 1 µL of 5 mM SYTOX green in dimethyl sulfoxide (Invitrogen, 

Carlsbad, CA), and tested by flow cytometric analysis performed on the BD Biosciences 

FACSCanto II (Lennen & Pfleger, 2013). Approximately 18,000 events were tested per 

sample, and each sample had three parallel groups. 

 

Membrane fluidity 

Membrane fluidity was tested using 1, 6-diphenyl-1, 3, 5-hexatriene as previously 

described (Mykytczuk, Trevors, Leduc, & Ferroni, 2007; L. A. Royce et al., 2013). Briefly, 

E. coli cells were treated as described in membrane permeability section. Cell pellets were re-

suspended in PBS at a final OD550 = 1, then 500 µL resuspended cell solution was transferred 

into a 1.5 mL centrifuge tube which contained 500 µL 0.4 µM DPH, vortexed, and incubated 

at 37°C. Samples were then centrifuged and cell pellets were resuspended with 500 µL PBS 

(pH 7.0). 100 µL cell solution was transferred into sterile black-bottom Nunclon delta surface 
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96-well plate with 4 replicates, and the cell solution without DPH was used as blank. 

Membrane fluorescence polarization was measured using a Synergy 2 Multi-Mode 

microplate reader from BioTek. 

 

Cell surface hydrophobicity 

Cells were treated with MOPS with 2.0% (w/v) glucose and 10 mM octanoic acid at 

pH 7.0, incubated at 37°C for 1 hour along with a control group to which no octanoic acid 

was added. Un-adapted and 10 mM C8 adapted cells were washed twice with PBS, and 

resuspended in PBS (pH 7.0) to OD550 ≈ 0.6. Then, 4 mL cells were added to a glass tube and 

100 µL resuspended cells were used to measure OD550, recorded as OD1. Next, 1 mL 

dodecane was added to the glass tubes (Pembrey, Marshall, & Schneider, 1999). The glass 

tube was vortexed using a multi-tube vortexer (Thermo Fisher Scientific Inc., Waltham, MA, 

USA) at 2500 rpm for 10 minutes to homogenize the aqueous and organic phases. The glass 

tube was left to stand for 15 minutes to allow phase separation and the OD550 of the aqueous 

phase (OD2) was determined. Partitioning of the bacteria suspension is calculated using the 

following equation: 

!"#$"%&	()#&*&*+%*%, = 	./0 − ./2	+3	)45"+56	(ℎ)6"./0
∗ 100 

 

Membrane lipid composition 

E. coli cells were harvested at mid-log phase, resuspended in 25 mL MOPS media 

with 2.0% (w/v) dextrose and 30 mM C8 at pH 7.0 and incubated for 3 hours at 37°C. The 

cells were washed twice in cold sterilized water and resuspended into 6 mL methanol. 1.4 

mL cells solution was transferred into glass tubes with three replicates (Bligh & Dyer, 1959), 
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and sonicated for three, 30 second bursts. A total of 20 µL of 1 µg/ µL C7, C11, and C15 in 

methanol was added as an internal standard. For fatty acid extraction, the glass tube was 

incubated at 70°C for 15 minutes and cooled to room temperature. The cells were centrifuged 

at 4000 rpm for 5 minutes. The supernatant was transferred into a new glass tube with 1.4 

mL nanopure water, and the mixture was vortexed. Chloroform with a volume of 750 µL was 

add into the cell pellets, vortexed and shaken in a horizontal shaker at 150 rpm, 37°C for 5 

minutes. We transferred the supernatant with H2O back to the cell pellets glass tube, vortexed 

for 2 minutes, then centrifuged at 3,000 rpm for 5 minutes. The lower chloroform layer 

which contain free fatty acid was transferred into a new glass tube. The free fatty acids were 

concentrated with an N-Evap nitrogen tree evaporator. For fatty acid derivatization, 2 mL of 

1N HCl was added in methanol to the samples. The free fatty acids were concentrated under 

nitrogen, heated to 80°C for 30 minutes, and then cooled to room temperature. 2 mL of 0.9% 

NaCl solution and 1 mL hexane was added and followed by vortex for 2 minutes and 

centrifugation at 2,000 × g for 2 minutes. The upper layer, the hexane with FAMEs, was 

transferred into a GC vial for analysis. The GC-MS was equipped with the same instruments 

as that used in the determination of fatty acid titers. The ratio of saturated to unsaturated fatty 

acids (S:U) and weight-average lipid length were calculated as previously described (L. A. 

Royce et al., 2013). 

 

Results and Discussion  

 

Verified mutations in evolved strains 

To identify mutations acquired during the metabolic evolution experiment, we 

sequenced the genomic DNA of ML115, LAR1, and LAR2 using the Illumina platform. We 
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used the breseq pipeline and short-read aligner, Bowtie2, to map reads from each strain to the 

E. coli K-12 MG1655 reference genome and identify sequence variations. A 768 bp insertion 

sequence (IS) was predicted in waaG in the parent strain, but neither of the evolved strains. 

The same mutation in rpoC was predicted in both evolved strains and results in an amino 

acid change from histidine to proline at position 419 in RpoC. Each evolved strain exhibits a 

mutation related to the BasS-BasR two-component signal transduction system. In LAR1, 

basR has a point mutation that results in an amino acid change from aspartic acid to tyrosine 

at position 28 in the protein product. In LAR2, basS has a 27 bp deletion that results in a 9 

amino acid (aa) deletion in BasS. Mutations predicted in both the parent and evolved strains 

were not considered for further analysis. Computationally predicted mutations were verified 

by PCR and Sanger sequencing. 

Genome diff files from the breseq output for the parent and evolved strains were 

submitted as input to the EVA pipeline (Boggess, Jarboe, & Dickerson, 2018) for additional 

analysis. HGVS-style descriptions (den Dunnen et al., 2016) of amino acid variations were 

generated by the EVA pipeline where applicable. Provean scores (Choi, Sims, Murphy, 

Miller, & Chan, 2012), which provide an indication of whether a mutation may be damaging 

(score ≤ -2.5) or tolerated (score > -2.5) and EVA prioritization of mutations are provided in 

Table 3.3. 

EVA analysis also generates a network representation of mutated features and 

downstream biological features that may be influenced by the mutation through gene 

regulation and cellular metabolism (Figure 3.1). However, we find that the latest release of 

RegulonDB, version 9.4 (Gama-Castro et al., 2016), does not include some published 

regulatory activities for the BasR transcription factor, specifically transcription activation of 
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waaH (computationally predicted), eptA, and arnBCADTEF (Froelich, Tran, & Wall, 2006; 

H. Ogasawara, S. Shinohara, K. Yamamoto, & A. Ishihama, 2012). We manually 

supplemented EVA with nine transcription activation links from BasR to each of these genes. 

From this updated visualization, we do not find any immediate relationship among mutations 

that occur in any individual strain. However, the relationship between basS and basR is clear 

in the network and genes in the BasR regulon are candidates for further study as their 

expression may be affected by either mutation in the evolved strains. 

Pathways included in the EVA-generated network include proline degradation and 

proline to cytochrome electron transfer, the QseBC quorum-sensing two-component system, 

which is involved in regulation of flagella biosynthesis, and polymyxin resistance. In 

addition, many genes in the BasR regulon are located in the membrane: putA, eptA, dgkA, 

waaH, qseC, arnCDTEF, and csgDEFG. Some of the genes in the BasR regulon, such as 

qseB, putA, and csgD also encode transcription factors which may alter expression of 

additional genes through transcription regulation. The eptA and waaH genes are particularly 

interesting because of their role in modifying LPS as is the csg operon for its relevance to 

curli assembly and biofilm formation. 

It must also be noted that interactions between RNA polymerase and promoter 

sequences are numerous and not represented in this network, but a query of the RegulonDB 

database identifies 1,606 genes with associated sigma 70 promoters. Because the rpoC 

mutation could affect transcription initiation of a large number genes, additional analysis 

may benefit from a transcriptomic experiment. 
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Table 3.3  EVA annotation and prioritization of mutations in ML115, LAR1, and LAR2. 

Mutations are ordered by position in the genome. IS indicates the introduction of an insertion sequence at the specified position. 

M
L1

15
 

LA
R

1  

LA
R

2 

Position Annotation b-number Mutation HGVS description Provean score EVA priority 

* * * 144,786 yadI b0129 G → T A70A N/A Low 
* * * 1,704,001 ydgJ b1624 A → C Q103P -3.86 High 
* * * 1,873,031 dgcJ b1786 IS R331_S496delinsGCTSV 

YTKMCREKILVMR -387.40 High 

* * * 1,946,308 yebB b1862 

IS 

G20_V200delinsVLPYLV 
KYQLHQIAGVITSGSLS 
VITVKTSWLQKAGFPFQ 
PSPRYLVLLNVRLINAML 

-451.03 High 

* * * 2,610,245 hyfH b2488 G → A G28S -2.61 High 
*   3,806,607 waaG b3631 

IS 
H154_G374delinsLIKLNL 
NVFKFFLPVFIRTENTVS 
KSQTAVKFIARKMA 

-674.93 High 

 * * 4,186,605 rpoC b3899 A → C H419P -9.35 High 
* * * 4,296,381 intergenic 

(gltP/yjcO) 
(b4077/b4078) +GC  N/A Unassigned 

  * 4,332,397 basS b4112 Δ27 bp A285_G293del -25.51 High 
 *  4,333,869 basR b4113 C → A D28Y -7.76 High 
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Figure 3.1  EVA-generated network. 

Network representation of mutated features that differ in parent strain, ML115, and evolved 
strains LAR1 and LAR2 and biological features related through gene regulation and 
metabolic pathways. Red nodes correspond to mutated features. Node shapes show feature 
type: ovals = genes, diamonds = gene products, triangles = reactions, hexagons = metabolic 
pathways. 
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RpoC, which contains a mutation both evolved strains, encodes the β' subunit of the 

RNA polymerase sigma 70 factor. The RNA polymerase sigma 70 factor is the primary 

sigma factor in E. coli K-12 MG1655 during exponential growth conditions (Jishage, Iwata, 

Ueda, & Ishihama, 1996) and functions to stabilize the open promoter complex during 

promoter melting and transcription initiation (Wigneshweraraj, Burrows, Severinov, & Buck, 

2005). Thus, the mutation in rpoC gene could widely affect gene transcription in the evolved 

strains. Different mutations in rpoC gene were found in other evolutionary studies of acid 

tolerance, and the mutated RpoC (V507L) contributed to increased acid-tolerant phenotype 

(Harden et al., 2015). It is possible that the mutated RpoC (H419P) contributes to the 

increased C8 tolerance observed in the evolved strains through altered expression of genes 

with sigma 70 promoters. 

We also confirmed a mutation in BasR (D28Y) in LAR1, which encodes the 

transcriptional regulator component of BasS-BasR system. The BasS-BasR two-component 

system is one of the two component signal transduction systems in E. coli which senses and 

responds to changes in environmental conditions (Hiroshi Ogasawara, Shota Shinohara, 

Kaneyoshi Yamamoto, & Akira Ishihama, 2012). In an evolutionary study of n-butanol 

tolerance, overexpression of basS was found to increase tolerance (Reyes, Almario, Winkler, 

Orozco, & Kao, 2012). Coincidentally, we found a 27 deletion in basS in LAR2, which 

encodes sensory histidine kinase of the BasS-BasR system. 

The 768 bp insertion (InsB-5, InsA-5, and InsAB-5) found in waaG in the parent 

strain, ML115, is predicted to interrupt the expression of waaG and potentially alter the 

expression level of downstream genes in its operon: waaP, waaS, waaS, waaO, waaJ, waaY, 

waaZ, and waaU (Figure 3.2). In the evolved strains, this insertion was not detected, 
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suggesting that the insertion sequence had moved and waaG had been restored. WaaG is a 

lipopolysaccharide (LPS) glucosyltransferase I enzyme which adds the first glucose of the 

outer core of LPS. 

 

Figure 3.2  An insertion sequence interrupts waaG in ML115. 

The insertion sequence, insAB-5, is found in the parent strain, ML115, and potentially affects 
transcription of other genes downstream of waaG. 

 

Colony morphology of parent and evolved strains 

The deletion of waaG gene has been shown to result in a truncated LPS core, loss of 

flagella pili (Parker et al., 1992), enhanced cell surface hydrophobicity, increased outer 

membrane permeability, and decreased ability of biofilm formation (Wang, Wang, Ren, Li, 

& Wang, 2015). The deletion of waaGPBI leads to a mucoid colony morphology (Parker et 

al., 1992), which is consistent with the morphological characteristics of ML115 compared to 

LAR1 on LB plates (Figure 3.3). Transmission electron microscopy images also reveal a lack 

of flagella in ML115 when waaG is non-functional and presence of flagella in LAR1 in 

which waaG is restored (Figure 3.4). 

 

The order in which mutations were acquired during the metabolic evolution experiment 

PCR experiments were performed on the parent strain, LAR1, and intermediate 

samples corresponding to the serial transfers performed in the original metabolic evolution 

waaG waaQwaaPwaaSwaaBwaaOwaaJwaaYwaaZwaaU
3,805,943 3,807,067

3,806,607

insAB-5

insA-5insB-5

1,978,518 1,979,215

insA-5p

waaQpwaaYpwaaZpwaaUp

768 bp IS
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experiment to detect the presence of the variant genomic sequence observed in the evolved 

strain. PCR fragments for each sample are shown in Figure 3.5. We find that waaG is 

repaired early in the experiment as can be seen by the decrease in fragment size which 

corresponds to the loss of the insertion sequence. The rpoC mutation is acquired in the 

middle of the metabolic evolution experiment, and the basR mutation is not detected until the 

end of the experiment. As LAR1 and LAR2 were not evolved independently, we may deduce 

that the basS mutation in LAR2 is similarly not acquired until the end of the experiment. 

 

Growth ability of reconstructed strains in C8 challenge experiments 

In order to identify mutations that contribute to C8 tolerance, we systematically 

introduced mutations into the parent strain, ML115, in the order they were acquired in the 

metabolic evolution experiment. We hypothesized that if a mutation was critical to C8 

tolerance, its addition to ML115 would improve the growth rate in a C8 challenge 

experiment. In addition, the combined effect of the basR and basS mutations examined both 

with and without the repair of waaG. 

None of the rpoC, basS, or basR mutations showed an improvement in C8 tolerance 

when introduced into ML115 individually that would account for the tolerance phenotype of 

LAR1 (Table 3.4). Removing the insertion sequence present in waaG in the parent strain 

increased the growth rate in 10 mM C8 compared to ML115 with the non-functional waaG 

gene (Figure 3.7A and B). The increase in growth ability observed in LAR1 vs ML115 

(Figure 3.7A and E), however cannot be attributed to the restoration of waaG alone. The 

incorporation of the rpoC mutation after waaG is repaired further improves C8 tolerance 

(Figure 3.7C). Reconstructing the basR mutation after the waaG repair and rpoC mutation 

are incorporated does not further improve tolerance (Figure 3.7D).  
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Figure 3.3  Morphological characteristic of ML115 and LAR1. 

ML115 is shown on the left and LAR1 is shown on the right on LB agar plates at 37°C. 

 

 

Figure 3.4  Transmission electron microcopy images of ML115 and LAR1. 

ML115 is shown on the left and LAR1 is shown on the right. Flagella are noticeably absent 
in ML115 and restored in LAR1. 
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Figure 3.5  PCR experiments to determine the order of mutations. 

PCR experiments for intermediate samples reveal the order in which mutations were 
acquired during the metabolic evolution experiment. Fragment sizes are labeled on the 
righthand ladder (in bp). 

 

Figure 3.6  Extracellular polymetric substance analysis for ML115, LAR1, and reconstructed 
strains. 
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Interruption of waaG expression has been shown to result in a truncated LPS, 

decreased expression of major outer membrane proteins, and hypersensitivity to hydrophobic 

antibiotics (Parker et al., 1992; Yethon, Vinogradov, Perry, & Whitfield, 2000). In our 

previous study, the specific grow rate of MG1655 was greater than 0.5 h-1 in MOPS with 

2.0% (w/v) glucose and 10 mM C8 (L. A. Royce et al., 2013), while the ML115 could barely 

grow under the same condition. Furthermore, octanoic acid is a hydrophobic chemical. Based 

on these observations, we believed the waaG insertion to cause octanoic acid hypersensitivity 

in the parent strain, ML115. 

Interestingly, when measuring extracellular polymetric substances, we find an 

abundance of polysaccharides present in ML115 and a sharp decrease when waaG is restored 

(Figure 3.6). Many other genes are required to synthesize LPS and it is possible that the 

organism is compensating for the damaged waaG by overexpressing other LPS genes. The 

addition of other mutations does not greatly affect the abundance of polysaccharides. The 

protein content of the free extracellular polymetric substance was only slightly lower as the 

LAR1 genotype was reconstructed in the parent strain.  

The repair of rpoC in LAR1 significantly decreased the growth rate in 10 mM C8 

compared to the LAR1 strain (data not shown) and introducing the rpoC mutation into 

ML115 with a repaired waaG gene further increased C8 tolerance (Figure 3.7C). This 

indicates that the rpoC mutation is important for the C8 tolerance phenotype of evolved 

strain. As previously mentioned, the rpoC mutation could widely alter genes expression 

level. 

Because of the rate of mutations in RNA polymerase genes in evolution experiments, 

there has been interest in investigating the relevance of these variations to fitness and their 
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mechanisms (Conrad et al., 2010). For several mutations in rpoB and rpoC genes, Conrad et 

al. found improved growth in minimal media and slower growth in rich media. They also 

observed a decrease in the open complex longevity at the promoter and an increase in the 

transcript elongation rate. Transcriptomic analysis of ML115 and LAR1 is needed to uncover 

what global effects the rpoC mutation exerts on the evolved strain and which genes with 

altered expression might influence C8 tolerance. 

The repair of basR in LAR1 strain and introduction in ML115 strain did not change 

the growth ability in the 10 mM C8 tolerance test (Figure 3.7D), demonstrating that the basR 

mutation alone is not able to increase the C8 tolerance. The introduction of the basS mutation 

from LAR2 into LAR1 did not further enhance the C8 tolerance phenotype. Similarly, the 

introduction of the basS mutation into ML115 did not affect tolerance at 10 mM C8 (Table 

3.4). As the basS and basR mutations were acquired near the end of the evolution 

experiment, which corresponded to a concentration of 30 mM C8, repeating the growth 

experiment at a higher concentration may reveal some yet observed contribution to tolerance 

from these mutations. 

 

The waaG, basS and basR mutations affect the cell membrane 

Previous studies identified membrane damage as a key mechanism of microbial 

inhibition when applying exogenous octanoic acid challenge to E. coli strains or during fatty 

acid production (Jarboe et al., 2013; Lennen & Pfleger, 2013; L. A. Royce et al., 2013; L. A. 

Royce et al., 2015; Sherkhanov et al., 2014), but the introduction of basS and basR mutations 

in ML115 did not show improved tolerance at 10 mM C8. However, membrane 

characterization of the reconstructed strains revealed that these mutations improve cell 

membrane integrity. 
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Figure 3.7  Growth ability of ML115, LAR1, and reconstructed strains in the order that mutations were acquired. 

Strains were grown in MOPS media with 2.0% (w/v) glucose with 0 and 10 mM octanoic acid at 37°C. A. The parent strain, ML115; 
B. ML115 with waaG repaired; C. ML115 with repaired waaG and the rpoC mutation; D. ML115 with repaired waaG, the rpoC 
mutation, and the basR mutation; E. The evolved strain LAR1. Values are the average of three biological replicates. Coloring is 
consistent for these strains throughout all figures.  
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Table 3.4  Growth ability of ML115, LAR1, and reconstructed strains. 

The top section of the table has data for the evolved strain, LAR1, the parent strain, ML115, and reconstructed strains with mutations 
in the order they were acquired in the metabolic evolution experiment. The bottom section of the table shows other reconstructed 
strains used to analyze independent and combined contributions of mutations to octanoic acid tolerance. For each strain, specific 
growth rate (GR), time at which log phase occurs, the inflection OD, and the 24 hour OD are provided. Coloring is consistent for the 
strains in all figures presented in this document. Inflection OD is defined as the value of OD550 and the first time point recorded 
corresponding to stationary phase. 

Strain Gene 0 mM C8 10 mM C8 

 
w

aa
G

 
IS

 
re

m
ov

ed
 

rp
oC

 

ba
sR

 

ba
sS

 

Specific GR 
Log 
Phase Inflection OD 24 h OD Specific GR 

Log 
Phase Inflection OD 24 h OD 

LAR1 * * *  0.56±0.00 3~7 h 2.53±0.07 (8 h) 3.01±0.04 0.56±0.00 4~8 h 2.34±0.04 (9 h) 2.20±0.07 

ML115     0.60±0.01 3~6 h 2.04±0.07 (7 h) 3.17±0.07 0.15±0.00 ND ND 0.29±0.01 

ML115+waaGInD *    0.53±0.01 3~7 h 1.99±0.02 (8 h) 2.87±0.17 0.39±0.01 6~11 h 1.66±0.03 (12 h) 1.57±0.03 

ML115+waaGInD+rpoC* * *   0.57±0.01 3~7 h 2.47±0.00 (8) 3.07±0.11 0.55±0.02 4~8 h 2.31±0.06 (9 h) 2.20±0.02 

ML115+waaGInD+rpoC*+basR* * * *  0.57±0.00 3~7 h 2.55±0.03 (8 h) 2.98±0.04 0.57±0.01 4~8 h 2.20±0.03 (9 h) 2.13±0.01 

ML115+rpoC*  *   0.65±0.01 3~6 h 1.95±0.04 (7 h) 3.00±0.02 0.23±0.01 ND ND 0.38±0.02 

ML115+basR*   *  0.60±0.00 3~6 h 1.90±0.02 (7 h) 2.61±0.02 0.15±0.00 ND ND 0.28±0.01 

ML115+basS*    * 0.60±0.01 3~6 h 1.96±0.04 (7 h) 2.74±0.02 0.16±0.00 ND ND 0.31±0.01 

ML115+waaGInD+basR* *  *  0.45±0.01 4~8 h 2.39±0.02 (9 h) 3.00±0.10 0.35±0.01 6~11 h 1.92±0.02 (12 h) 1.57±0.07 

ML115+waaGInD+basS* *   * 0.52±0.01 3~7 h 2.25±0.03 (8 h) 2.95±0.12 0.35±0.01 5~9 h 1.56±0.08 (10 h) 1.30±0.08 

ML115+rpoC*+basR*  * *  0.67±0.00 2~5 h 1.98±0.01 (6 h) 2.88±0.05 0.16±0.00 ND ND 0.17±0.02 

ML115+basR*+basS*   * * 0.54±0.00 3~7 h 1.94±0.04 (8 h) 2.34±0.09 0.20±0.01 ND ND 0.21±0.01 

ML115+waaGInD+basR*+basS* *  * * 0.47±0.01 3~8 h 2.44±0.03 (9 h) 2.98±0.04 0.39±0.00 4~10 h 1.76±0.02 (11 h) 1.53±0.03 
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Membrane fluidity can be measured as a fluorescence polarization, and the increased 

membrane polarization corresponds to decreased fluidity and an increase in membrane 

rigidity. 

After being treated with 10 mM C8 for 1 hour, the ML115+basR* and ML115+basS* 

strains showed significantly higher membrane polarization than ML115 and ML115+rpoC* 

strains (Figure 3.8B), showing that basS and basR mutations improved cell membrane 

rigidity. There is no significant difference in cell membrane rigidity between LAR1 and 

LAR1+rpoC after treatment which showed that the rpoC mutation in LAR1 is not 

responsible for the increased cell membrane rigidity phenotype. 

Directly comparing strains with and without a 10 mM C8 treatment revealed that all 

strains except ML115 and ML115+rpoC* have significantly higher membrane polarization, 

suggesting they can alter the cell membrane by sensing and responding to the altered 

environmental condition. Additionally, the ML115+basR*, ML115+basS* and LAR1+rpoC 

strains reached a similar membrane polarization level as LAR1 after treatment. We 

hypothesize that the basS and basR mutations are the key contribution to improve cell 

membrane rigidity in the evolved strains. 

Examining reconstructed strains that illustrate the order of acquired mutations, we 

observe an increase in cell membrane rigidity at 10 mM C8 with the addition of each 

mutation (Figure 3.8A). There may exist some synergistic effect between the waaG repair 

and rpoC mutation. A further increase to cell membrane polarization is seen with the addition 

of the basR mutation at 10 mM C8. 

Membrane leakage is another key factor of cell membrane damage. We used flow 

cytometry to separate and quantify SYTOX-permeable and SYOX-impermeable cells, where 
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permeability of SYTOX indicates a damaged cell membrane. Without exogenous 10 mM C8 

challenge, only about 5% of ML115, ML115+rpoC*, ML115+basR*, and ML115+basS* 

strain population became SYTOX-permeable (Figure 3.9A). After a C8 challenge for 1 hour, 

the permeable strain population of ML115 and ML115+rpoC* increased to 17.57±2.79% and 

11.07±1.44%, while the permeable strain population of ML115+basR* and ML115+basS* 

decreased to 3.2±0.37% and 2.93±0.45% (Figure 3.9A). 

These results show that restoring waaG is primarily responsible for preventing cell 

membrane leakage, the rpoC mutation partially restores cell membrane leakage, and the basS 

and basR mutations help reduce cells membrane leakage. Additionally, the SYTOX-

permeable strain population of ML115+basR* and ML115+basS* significantly decreased 

after C8 challenge (Figure 3.9B), showing the altered cell membrane for strains with basS or 

basR mutations has increased the resistance to exogenous 10 mM C8 challenge compared to 

no C8 challenge. The SYTOX-permeable strain population of LAR1 and LAR1+rpoC were 

2.17% and 2.7% without C8 treatment (Figure 3.9B). After treated with 10 mM C8 for 1 

hour, the permeable strain population of LAR1 decreased to 1.93±0.45%, while it increased 

to 4.37±0.57% when the rpoC mutation repaired in LAR1 (Figure 3.9B). 

This decreased resistance is consistent with the partially restores cell membrane leakage in 

ML115+rpoC*. 

Strains that reconstruct the order of acquired mutations show that repairing waaG 

reduces the percent of SYTOX-permeable cells drastically. The next mutation, in rpoC, 

partially restores cell membrane leakage, and finally, the basR mutation again alleviates cell 

membrane leakage (Figure 3.9A). 

  



www.manaraa.com

 85 
 

Measurements of the membrane fluidity and membrane leakage help to understand 

how each mutation alter the cell membrane properties for increasing resistance to C8 

tolerance and increasing fatty acid production. These results show that the rpoC mutation, 

while a factor of increasing C8 tolerance, does not contribute to increased membrane rigidity 

and partially restores cell membrane leakage. The basS and basR mutations can separately 

increase the cell membrane rigidity and prevent cell membrane leakage, but do not contribute 

to C8 tolerance phenotype at 10 mM C8. 

Additionally, cell surface hydrophobicity was measured for individual mutations and 

strains that reconstruct the order of acquired mutations. The evolved strain, LAR1 exhibits a 

higher percentage of hydrophobicity than the parent strain, ML115 for which no individual 

mutation can account. The repair of waaG decreases the percent hydrophobicity and the basS 

mutation increases the percent hydrophobicity in 10 mM C8 compared to the control 

condition when each are introduced individually into ML115 (Figure 3.10B). However, when 

examining reconstructed strains with multiple mutations, an increase in percent 

hydrophobicity is seen with the addition of the rpoC and then basR mutations, suggesting a 

synergistic effect. The incorporation of the variant basR can achieve the percent 

hydrophobicity of the LAR1 strain. 

Finally, we examine the effect of each mutation on membrane lipid composition as 

well as the cumulative effects of mutations in the order they were acquired. Interestingly, we 

find that different mutations result in different lipid compositions. For example, the rpoC 

mutation leads to increased mono-unsaturated fatty acids C16:1 and C18:1 and decreasd 

saturated fatty acid C16 while the restoration of waaG has the opposite effect (Figure 3.11A 

and B). The effects were similar with and without the 30 mM exogenous C8 treatment, but 
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with an overall decrease in C14:0 and C17cyc. Examining mutations in the order they were 

acquired shows that mutations subsequent to waaG increased C18:1 and decreased C16:0 

(Figure 3.11C and D). 

A 

 
B 

  

Figure 3.8  Membrane polarization. 

Membrane polarization of reconstructed strains at mid-log phase (OD ≈ 1) with 10 mM C8 
challenge. A. membrane polarization of strains in the order that mutations were acquired in 
the metabolic evolution experiment; B. membrane polarization for the parent strain, evolved 
strain, and strains with individual mutations introduced into ML115. Values are the average 
of three biological replicates, each biological replicate has four technical replicates and 
error bars show standard deviation. 

0.2

0.26

0.32

0.38

Control  10mM C8

M
em

br
an

e 
po

la
riz

at
io

n

ML115

ML115+waaGInD

ML115+waaGInD+rpoC*

0.2

0.26

0.32

0.38

Control 10mM C8

M
em

br
an

e 
Po

la
riz

at
io

n

ML115

ML115+waaGInD

ML115+rpoC*

ML115+basS*

ML115+basR*

LAR1



www.manaraa.com

 87 
 

A 
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Figure 3.9  Membrane leakage 

Membrane leakage of reconstructed strains and at mid-log phase (OD ≈ 1) with 10 mM C8 
challenge. A. membrane leakage of strains that recreate the order in which mutations were 
acquired in the evolution experiment; B. membrane leakage of the parent strain, evolved 
strain LAR1, and individual mutations introduced into the parent strain. Values are the 
average of three biological replicates, and error bars show standard deviation. 
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Figure 3.10  Percent of hydrophobicity. 

Percent of hydrophobicity for parent strain, evolved strain, and other reconstructed strains. 
A. reconstructed strains that recreate the order in which mutations were acquired in the 
metabolic evolution experiment; B. reconstructed strains illustrating individual contribution 
of mutations. Values are the average of two biological replicates and two technical replicates 
and error bars show standard deviation. 
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Figure 3.11  Membrane lipid composition. 

Membrane lipid composition for reconstructed strains at 0 (A and C) and 30 mM (B and D) C8. Values are the averages of three 
biological replicates and error bars show standard deviation. A and B show the effects of individual mutations on membrane lipid 
composition and C and D show the cumulative effects of mutations acquired in the metabolic evolution experiment. 
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The waaG and rpoC mutations improve fatty acid titer 

In addition to improving tolerance to octanoic acid, the repair of waaG demonstrates 

some improvement to fatty acid titer and when the introduction of the rpoC mutation is 

incorporated, titer matching that of LAR1 at 24 and 72 hours is observed (Figure 3.12). We 

have shown that a non-functional waaG decreases C8 tolerance and alters membrane 

properties. The mutation in rpoC, the β’ subunit of RNA polymerase sigma 70 subunit, is 

anticipated to alter expression of genes with sigma 70-associated promoters in exponential 

growth conditions. We previously described the mutation as predicted to be damaging in 

EVA analysis because the genomic variation is not found among published genomic 

sequences, however, as rpoC plays a critical role in transcription initiation, it is likely that its 

behavior is modified, which in turn, could achieve a wide range of phenotypic effects by 

perturbing global transcription. Indeed, mutations in the primary RNA polymerase genes 

have been found in several adaptive evolution experiments (Applebee, Herrgård, & Palsson, 

2008; Jin & Gross, 1988; Klein-Marcuschamer, Santos, Yu, & Stephanopoulos, 2009; Trinh, 

Langelier, Archambault, & Coulombe, 2006; Zhou & Jin, 1998). In addition to increasing the 

specific growth rate in the C8 challenge condition, the rpoC mutation appears to be a critical 

mutation for rewiring global transcription to support increased fatty acid titer in LAR1. 
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Figure 3.12  Fatty acid titer measured over time. 

Fatty acid titers for ML115, LAR1, and reconstructed strains at 6, 12, 24, and 72 hours. 
Values are the average of three biological replicates and error bars represent standard 
deviation. 
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Provean analysis which considers conservation at the mutation site among published gene 

products with sequence similarity. 

Both individual and collections of mutations were repaired in the evolved strain and 

introduced in the parent strain in order to characterize their contribution to phenotype. We 

show that non-functional waaG is detrimental to tolerance and affects membrane properties. 

A drastic reduction in membrane leakage is observed after waaG is repaired. The basS and 

basR mutations alter the cell membrane by increasing percent hydrophobicity and membrane 

polarization. Finally, the rpoC mutation contributes both to tolerance and increases fatty acid 

titer. 

The independent mutations in basS and basR may affect the BasS-BasR two-

component signal transduction system and alter transcription of genes in the BasR regulon. 

Using the gene regulatory and metabolic network generated by EVA, we identified candidate 

genes in the BasR regulon waaH and eptA for further study based on their function in 

modifying LPS. The csg operon was also of interest for its role in curli assembly and biofilm 

formation. Modification of these functions may have a similar effect on the evolved strain 

phenotype as the repair of waaG which is also involved in LPS modification, surface 

organelle biosynthesis, and biofilm formation. 

We hypothesize that the rpoC mutation alters global transcription in the evolved 

strains. We searched promoter sequences in the publicly available database, RegulonDB, and 

found 1,606 genes with associated sigma 70 promoters. Due to this large number of genes 

and sigma 70 being the primary sigma factor during exponential growth, a forthcoming 

RNA-seq study will compare the transcriptomes of ML115 and LAR1 and identify genes 

with altered expression that contribute to the tolerance phenotype. 
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Abstract 

Reverse engineering of strains obtained through metabolic evolution remains a 

significant challenge. Whole genome analysis is crucial for identifying mutations that are 

responsible for altered phenotype. These mutations can be introduced into ancestral strains 

and repaired in evolved strains to determine their relevance to improved fitness. In some 

cases, however, mutations arise in regulators and to understand the biological mechanisms 

responsible for phenotype, regulated genes must be studied. In our previous work, we 

identify mutations in a transcription factor and the β’ subunit of RNA polymerase (rpoC) in 

Escherichia coli evolved for improved octanoic acid tolerance (Boggess, Jarboe, & 

Dickerson, 2018). Here, we present an RNA-seq study to support reverse engineering efforts 

and integrate our transcriptomic analysis findings with gene regulatory and metabolic 

pathway data. We identify differentially expressed genes regulated by mutated features as 

candidate genes, construct gene knockout strains, and test for altered growth rate with 

exogenous octanoic acid. 

Introduction 

Metabolic evolution been previously used as a successful strategy for developing 

strains of Escherichia coli with increased improved to octanoic acid and increased short-
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chain fatty acid production (C8) (Royce et al., 2015). These strains have been characterized 

has having an altered membrane with increased polarization, decreased leakage, longer 

average lipid length, and an altered saturated to unsaturated fatty acid ratio. The evolved 

strains also have restored flagella, a decrease in extracellular polymetric substances and an 

increase in percentage hydrophobicity (Chen, Boggess, Dickerson, & Jarboe, 2018). Our 

previous work in reverse engineering the evolved strains LAR1 and LAR2 involved whole 

genome sequencing and mutation analysis. We identified an insertion sequence that leads to a 

non-functional waaG in the parent strain, ML115, a point mutation in rpoC in both evolved 

strains, a point mutation in basR in LAR1, and a 27 base pair (bp) deletion in basS in LAR2 

(Chen et al., 2018). 

Our previous work identified the restoration of waaG as a large contributor to the 

evolved strain phenotype, however this mutation does not reproduce the fatty acid titer and 

growth ability observed in LAR1. The mutations involving RpoC, the β’ subunit of RNA 

polymerase, and BasS-R, a two-component signal transduction system are believed to affect 

expression of other genes through transcription regulation rather than directly contribute to 

phenotype. The variant β’ subunit may affect global gene expression in the evolved strains. 

The BasR regulon involves 22 genes, however some of these genes encode transcription 

factors and expression for additional downstream genes in the regulatory network may be 

affected by the mutant BasR. 

In order to continue our work on reverse engineering LAR1, we must investigate the 

effects of mutations in regulators. In this work, we demonstrate the added value of omics 

experiments for reverse engineering microbial strains produced in metabolic evolution 

experiments, particularly when variant global regulators and transcription factors are found in 
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evolved strains. We also integrate transcriptomic data into the gene regulatory and metabolic 

network we hypothesize are affected by genomic mutations (Boggess et al., 2018). We 

performed RNA-seq experiments for ML115 and LAR1 for control and fatty acid production 

conditions. We analyzed transcriptomic data to find genes that are differentially expressed in 

the parent and evolved strain. Incorporating our prior knowledge about the genotypes of 

these strains and integrating transcriptomic data with gene regulatory and metabolic pathway 

data, we identified candidate genes to test for relevance to improved phenotype. 

 

Methods 

 

Bacterial strains, plasmids, and media 

Plasmids, strains from the octanoic acid evolution experiment, and reconstructed 

strains from this study are described in Error! Reference source not found.. E. coli DH5ɑ 

was used as a cloning strain, while the parent strain, ML115 and the evolved strain LAR1 

were used in genome modification procedures. All strains were grown overnight at 37ºC with 

250 rpm orbital shaking in 25 mL of MOPS minimal media (Wilmes-Riesenberg & Wanner, 

1992) with 2% glucose and chloramphenicol (35 µg/mL, if needed) in 250 mL baffled flasks. 

The overnight cultures were diluted to 0.05 optical density (OD) at 550 nm (OD550) for the 

octanoic acid (C8) tolerance test or diluted to OD550 = 0.1 for testing membrane leakage, 

membrane fluidity, cell hydrophobicity, and cell membrane composition. Transformants 

were grown in LB media at 37ºC or 30ºC, with chloramphenicol (35 mg/L), ampicillin (100 

mg/L), kanamycin (50 mg/L), or spectinomycin (50 mg/L) as needed. 
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Table 4.1  Strains and plasmids used in this study. 

Plasmids or strains Genotype or description Reference 
Plasmids 

  

pJMY-EEI82564 pTrc-EEI82564 thioesterase (TE10) 
from Anaerococcus tetradius, AmpR 

(Royce et al., 2015) 

pJMY-Empty pTrcHis B without the thioesterase 
(TE10), AmpR 

This study 

Strains 
  

ML115 MG1655 (∆fabD, ∆poxB, ∆ackA-pta: 
cmR) 

(Li, Zhang, 
Agrawal, & San, 

2012) 
LAR1 ML115 evolved for C8 tolerance, CmR (Royce et al., 2015) 
LAR2 ML115 evolved for C8 tolerance, CmR (Royce et al., 2015) 
ML115+pJMY-Empty ML115 with “empty” plasmid This study 
ML115+pJMY-EEI82564 ML115 with thioesterase for SCFA 

production 
This study 

LAR1+pJMY-Empty LAR1 with “empty” plasmid This study 
LAR1+pJMY-EEI82564 LAR1 with thioesterase for SCFA 

production 
This study 

ML115+waaGInD ML115 with insertion sequence 
removed from waaG  

This study 

ML115+waaGInD+rpoC* ML115 with repaired waaG and rpoC 
mutation found in LAR1 and LAR2 

This study 

ML115+waaGInD+∆bssS ML115 with waaG repair and ∆bssS This study 
 

Growth analysis 

Octanoic acid tolerance was determined by measuring OD550 every hour. Overnight 

seed cultures were inoculated into 250 mL baffled flasks, which contained 25 mL MOPS 

with 2.0% (w/v) dextrose and 10 mM octanoic acid (1.44 g/L) with an initial media pH of 7.0 

and an initial OD550 of 0.05. The control groups used the same culture without the addition of 

octanoic acid. The flasks were incubated in a rotary shaker at 200 rpm and 37ºC. Cultures 

were taken and measured at OD550 every hour. 
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RNA Isolation 

Total RNA was isolated from saved cell pellets sampled at 6, 12, and 24 hours using 

RNeasy mini kit (Qiagen, Valencia, CA). Genomic DNA contamination was removed by 

Turbo DNA-free kit (Life Technologies, Carlsbad, CA), followed by the verification of total 

RNA using Agilent 2100 Bioanalyzer and RNA 600 Nano total RNA kit (Agilent, Santa 

Clara, CA). Next, ribosomal RNA (rRNA) was removed by Ribo-Zero (Bacteria) Magnetic 

kit (Illumina, San Diego, CA). Messenger RNA (mRNA) and other small RNA were purified 

and concentrated by Rneasy MinElute Cleanup kit (Qiagen, Valencia, CA). Agilent 2100 

Bioanalyzer and RNA 6000 Pico mRNA kit (Agilent, Santa Clara, CA) were used to verify 

that the sample contained mRNA and other small RNA, but no rRNA. All procedures 

followed the manufacturers' user guide. 

 

Fermentation for fatty acid production 

The fatty acid production strains harboring the pJMY-EEI82564 plasmid by 

electroporation were grown on LB plates with ampicillin (100 mg/L) and incubated at 30ºC 

overnight. Individual colonies were precultured in 10 mL LB media with ampicillin (100 

mg/L) in 250 mL flasks at 30ºC, 250 rpm with orbital shaking overnight. Seed cultures were 

then inoculated into 250 mL baffled flasks containing 50 mL of LB media with 1.5% 

dextrose, ampicillin (100 mg/L), and isopropyl-β-D-thiogalactopyranoside (IPTG) (1.0 mM) 

at an initial OD550 of 0.1. The flasks were incubated in a rotary shaker at 200 rpm and 30ºC, 

the culture samples were saved for testing fatty acid titer at 6, 12, 24, and 48 hours.  
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RNA-seq and short read analysis 

For the transcriptomic analysis, RNA samples from the 6, 12, and 24 hour time points 

were obtained. These three time points were chosen to represent the lag phase, mid-log 

phase, and the stationary phase. After 24 hours, the OD550 value, the fatty acid titer, and the 

glucose concentration of the four strains did not vary significantly. The transcriptomic 

experiment performed was designed as a multi-factor experiment with three factor levels: 

strain, plasmid, and time. The two strains used in the experiment were the parent strain, 

ML115, and the evolved strain, LAR1. Plasmids were introduced into the strains to create a 

short chain fatty acid production condition (pJMY-EEI82564) and a control condition 

(pJMY-Empty). The plasmid pJMY-EEI82564 contains an acyl-acyl carrier protein 

thioesterase from Anaerococcus tetradius and an pJMY-Empty contains the same genetic 

material, but without the thioesterase gene. The multi-factor experiment had twelve 

combined factor levels with four biological replicates each for a total of forty-eight samples. 

Single-end, directional RNA-Seq was performed by the Iowa State University DNA 

facility using the Illumina HiSeq 3000 platform with reads 100 base pairs (bp) in length. 

Reference-based assembly was performed using Rockhopper2 (version 2.0.3), which is 

designed specifically for bacterial systems (McClure et al., 2013). We created a reference 

transcriptome was corresponding to pJMY-EEI82564 that contained sequences of genes on 

the plasmid. Both de novo assembly and alignment to E. coli K-12 MG1655 (version 

U00096.3) (Blattner et al., 1997; Hayashi et al., 2006) reference transcriptome and pJMY-

EEI82564 transcriptome were performed, which represented a combined 4,321 transcripts. 

Assembled RNA transcripts were used to further validate previously predicted genomic 

mutations. 
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Raw read counts from the Rockhopper2 assembly were analyzed with DESeq2 

version 1.20.0 (Love, Huber, & Anders, 2014), a statistical package for differential 

expression analysis in R version 3.5.0.1 (R Core Team, 2018). DESeq2 was used to 

normalize raw count data and to test for differential expression between conditions and 

calculate pairwise log2 fold change (LFC). Differential expression analysis was performed in 

a pair-wise manner for strain contrasts at each time point and with each plasmid treatment. 

Differentially expressed genes were those with False Discovery Rate (FDR) adjusted p-value 

< 0.05. 

Annotations from EcoCyc (Keseler et al., 2017) and RegulonDB (Gama-Castro et al., 

2016) were used to identify genes with promoters associated with sigma factor 70 or 

belonging to the BasS-BasR regulon. Gene Ontology (GO) enrichment was performed to 

identify trends in gene function and localization annotations (Gene Ontology Consortium 

validation date 12/21/2015) (Ashburner et al., 2000; The Gene Ontology Consortium, 2017). 

Gene lists were analyzed for overrepresented GO terms in the biological process, cellular 

component, and molecular function ontologies using BiNGO and a significance level of FDR 

corrected p-value < 0.05 (Maere, Heymans, & Kuiper, 2005). 

E. coli Variant Analysis (EVA) software (Boggess et al., 2018) was used to generate 

a gene regulatory and metabolic network that reflected mutated features and downstream 

biological elements. Onto the network, we applied fold change data for strain contrasts to 

visualize altered transcript abundance for genes in the BasR regulon. We additionally 

modified EVA for use with candidate gene lists. Given a list of genes as input, we generated 

a gene regulatory and metabolic network to find potential interactions among perturbed 

genes. 
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Results and discussion 

 

Fatty acid fermentation for ML115 and LAR1 with pJMY-EEI82564 or pJMY-Empty 

We first compared the cell growth ability during short-chain fatty acid fermentation 

of E. coli ML115 and LAR1 with pJMY-EEI82564 and pJMY-Empty (Figure 4.1A). LAR1 

with pJMY-EEI82564 reached the highest OD550 = 3.195 at 24 hours, then had a slightly 

decrease to OD550 = 2.828 at 48 h, finally increased to OD550 = 2.94 at 72 hours. ML115 with 

pJMY-EEI82564 reached the highest OD550 = 1.405 at 12 hours, then decreased to OD550 = 

1.035 at 36 hours, finally increased to OD550 = 1.325 at 72 hours. LAR1 and ML115 with 

pJMY-Empty reached stationary phase (OD550 = 1.808 and 2.09) at 12 hours, then slight 

increased to final OD550=2.218 and 2.475.  The LAR1 strain with the pJMY-EEI82546 

plasmid had the highest cell growth ability, even higher than LAR1 with the pJMY-Empty 

plasmid, demonstrating LAR1’s improved growth rate when under SCFA production 

conditions.  

From Figure 4.1Error! Reference source not found.B, we observed that the highest 

fatty acid titer of LAR1 with pJMY-EEI82564 could achieve 420.75 mg/L, which was 3-fold 

higher than that of ML115 with pJMY+EEI82564 (133.3 mg/L). The fatty acid titer of LAR1 

and ML115 with pJMY-Empty was about 35 mg/L. The strains with pJMY-EEI82564 

majorly produced free fatty acids (C4, C6, C8:0, C8:1, C10:0, C10:1, C12:1, C12:0, C14:1, 

C14:0, C16:1, C16:0, C18:1, and C18:0) during exponential phase, the C8 and C16 were the 

primary components (Figure 4.1E). The strains with pJMY-Empty majorly produced free 

fatty acids (C14:0, C16:1, C16:0, C18:1, and C18:0) during log phase (6 to 24 hours), the 

C16:0 and C18:0 were the primary components (Figure 4.1E).  
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LAR1 and ML115 strains with pJMY-EEI82564 consumed glucose primarily during 

the log phase (6 to 24 hours), and the glucose consumption rates were 0.35 g/L/h and 0.14 

g/L/h, respectively (Figure 4.1C). In contrast, LAR1 and ML115 strains with pJMY-Empty 

consumed the most glucose during the lag and log phases (0 to 24 hours), the glucose 

consumption rate is 0.107 g/L/h and 0.165 g/L/h, respectively. After 24 hours, the glucose 

consumption ended for all four strains. 

We also tested the pH of the fermentation media at different time points for all the 

strains (Figure 4.1D). Surprisingly, LAR1 with pJMY-EEI82564 was able to maintain a pH 

above 5.385, which had the highest short-chain fatty acid titer. The pH of the fermentation 

media of LAR1 with pJMY-Empty, LAR1 and ML115 with pJMY-EEI82564 was below 

4.85 at 72 hours. When the LAR1 produced a large number of short-chain fatty acids, the 

LAR1 strain demonstrated a strategy to maintain the pH of media. 

 

Identifying the rpoC mutation effect among differentially expressed genes 

Differentially expressed genes were investigated for relation to the rpoC mutation by 

examining if they exhibited a consistent fold. We hypothesized that the transcriptomic signal 

caused by the rpoC mutation may be present under all time and plasmid conditions in strain 

contrasts. To search for genes affected by the rpoC mutation, we identified genes that exhibit 

a statistically significant and either consistently positive or negative fold change across all 

strain contrasts. Fifty-two genes had lower transcript abundance and sixty-five genes had 

higher transcript abundance in LAR1 versus ML115 for all time points and plasmid 

conditions. These sets of genes were filtered based on if they had a promoter that is 

associated with sigma factor 70, the primary sigma factor in E. coli K-12 MG1655 during 

exponential growth conditions (Jishage, Iwata, Ueda, & Ishihama, 1996). 
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A
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C

 

D

 
E 

 

Figure 4.1  Strain characteristics during fatty acid fermentation. 
A) The growth ability; B) Total fatty acid titer; C) Glucose concentration; D) pH of the 
media; E) Relative fatty acid distribution, by weight. Values are the average of four 
biological replicates, and error bars indicate standard deviation. Fermentation was 
performed with LB + 1.5% glucose, ampicillin (100 mg/L), and 1 mM IPTG at 30ºC. 
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Eighteen downregulated and twenty upregulated genes were selected (Table 3.2). Similar 

filters were applied for other sigma factors and the alarmone, ppGpp (guanosine 

tetraphosphate and guanosine pentaphosphate), which binds to RNAP and regulates promoter 

selection. 

A criteria of |log2 fold change| > 0.5 for all strain contrasts was used to remove genes 

that exhibited small variations in transcript abundance. Thirteen genes had a log2 fold change 

< -0.5 for all strain contrasts: bssS, fliR, rcsA, dsrA, mntH, ssrA, speB, rplB, ugpQ, waaG, 

yjbE, phnP, and osmY. Eleven genes exhibited a log2 fold change > 0.5 in all strain contrasts: 

hofC, hofB, btuF, mtn, fdnH, fdnI, pykA, nrdB, pka, yfiR, yfiN, yfiB, glyS, mtlD, fadA, and 

fadB. The gene waaG was previously studied and contains an insertion sequence in the 

parent strain and is excluded from additional investigation into the effect of the rpoC 

mutation. Interestingly, the transcript abundance for waaG is greater in the parent strain with 

the non-functional copy of the gene. We attribute this to poor alignment in this region due to 

the insertion sequence. 

We also considered that genes with sigma 70 promoters may be influenced by other 

mutations present in LAR1. We examined the gene regulatory network generated by EVA for 

the basR mutations and included the next three levels of gene regulation, which included 130 

genes. When cross-referencing the list of genes downstream of these mutations with the 

differentially expressed genes mentioned above, we identify osmY and fliR as being 

indirectly regulated by the BasR transcription factor. In the case of osmY, BasR is a 

transcriptional activator for csgD (Ogasawara, Shinohara, Yamamoto, & Ishihama, 2012). 

CsgD represses transcription of fliZ (Dudin, Geiselmann, Ogasawara, Ishihama, & Lacour, 

2014), and FliZ represses transcription of csgD and osmY. For fliR (Pesavento et al., 2008; 
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Pesavento & Hengge, 2012), BasR activates transcription of qseB (Guckes et al., 2013), 

QseB is believed to activate transcription of flhC and flhD (Sperandio, Torres, & Kaper, 

2002), and FlhDC is a transcriptional activator for fliR (Brandi, Giangrossi, Giuliodori, & 

Falconi, 2016). In both cases, it is possible that the differences in transcript abundance 

between strains are indirectly affected by the basR mutation. 

GO enrichment highlighted the relationship between fdnH and fdnI as components of 

the formate dehydrogenase complex but did not give insight into larger trends among the 

genes. Because these genes are in the same operon and co-transcribed, it is not surprising that 

they appeared in the same list. Other operons that appeared in our analysis include yfiRNB, 

fadAB, and hofBC. The hofBC genes have sequence similarity to protein secretion and 

fimbrial assembly genes (Whitchurch & Mattick, 1994) and yfiRNB genes is involved in 

exopolysaccharide biosynthesis in Pseudomonas aeruginosa. Because of our previous work 

characterizing the altered membrane and extracellular polymeric substances in LAR1, we 

believe these operons to be worthy of investigation. For these cases, we shall perform 

knockout experiments on the entire operon as a first test for relevance to evolved strain 

phenotype. 

The fadAB operon is also of interest because of the genetic interventions introduced 

in the parent strain to modify the metabolism for improved fatty acid production. In ML115, 

a fadD knockout was added to deactivate the fatty acid beta-oxidation pathway (Figure 4.2). 

Two additional genetic interventions were made to inactivate acetate production: the deletion 

of poxB and ack-pta (Li et al., 2012). 
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Figure 4.2  Fatty acid beta oxidation pathway. 

The fatty acid beta oxidation pathway in E. coli (image retrieved from EcoCyc). Under 
aerobic conditions, FadD, FadB, and FadA break down fatty acids. 

 

With fatty acyl-CoA synthetase (fadD) absent in ML115 and LAR1, it is surprising to see an 

increase in expression of fadA and fadB and even more interesting that there is greater 

transcript abundance for both genes in LAR1 when compared to ML115. 

Other interesting genes from our list of candidates include yjbE, the most strongly 

downregulated gene for all LAR1-ML115 strain contrasts, for its role in biofilm formation 

and involvement in the production of extracellular polysaccharides (Ferrières, Aslam, 

Cooper, & Clarke, 2007). The gene bssS is also involved in biofilm formation and is the 

second most strongly downregulated gene. A bssS deletion has previously been reported as 

increasing biofilm formation and motility (Domka, Lee, & Wood, 2006). 

Upon examining our candidate genes in the context of the gene regulatory and 

metabolic network generated by EVA, we find expected interactions that connect fadA and 

fadB as well as fdnH and fdnI (Figure 4.4A). Previously unexamined interactions are found 
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between pykA and mtlD (Figure 4.4B). These genes are involved in the super pathway of 

glycolysis and Entner-Dourdoff. Both genes have a higher transcript abundance in LAR1 

compared to ML115. A cluster containing rcsA and yjbE is also found in the network (Figure 

4.4C). The gene yjbE was previously named as a gene of interest due to its role in 

extracellular polysaccharide production and because it exhibits the largest strain contrast. 

RcsAB is believed to activate transcription of  yjbE (Ferrières et al., 2007) which would be 

consistent with a downregulation of rcsA and subsequent downregulation of yjbE as we see 

in LAR1 compared to ML115. 

 

Expression of genes in the BasR regulon 

Differentially expressed genes were compared with genes in the BasS-R regulon and 

up to three downstream levels of transcriptional regulation. We hypothesized that the 

production condition with the pJMY-EEI82564 plasmid would cause the most significant 

change in activity for the BasS-R two component signal transduction system, resulting in 

variation in expression among genes in the its regulon. To investigate genes in the BasR 

regulon, we used EVA to construct a gene regulatory and metabolic network that represented 

genes downstream of the transcription factor and included additional transcriptional 

regulation activities as previously described (Chen et al., 2018). Onto this network, we 

applied fold-change data for the strain contrast of interest (Figure 4.4) and BasR gene 

regulation activities. The variation between expected BasR transcription factor activity and 

observed direction in fold change for regulated genes speaks to the complexity of gene 

regulation and the fact that multiple regulators may affect gene expression. From our network 

analysis, we identified two operons of interest based on differential expression and gene 
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function: arnBCADTEF and csgDEFG. Both operons will be knocked out and tested for 

effect on specific growth rate in 10 mM C8. 

 

bssS knockout improves specific growth rate at 10 mM C8 

The gene bssS, a regulator of biofilm, exhibited a consistent direction in fold change 

for all strain contrasts. In all cases, the transcript abundance of bssS was lower in LAR1 than 

ML115. Because of its reported role in biofilm formation and motility, it was selected for 

additional study. bssS has promoters associated with sigma 70 and sigma 32, the primary 

sigma factor for heat shock response. A knockout of bssS was introduced into the parent 

strain, ML115, with the waaG repair. We have already shown the profound effect damaging 

waaG has on phenotype but wish to examine if knocking out bssS contributes to octanoic 

acid tolerance. To test this, we measured growth rate of our reconstructed strains in 0 and 10 

mM C8 (Figure 4.5A, B, and C). We find that specific growth rate is improved when bssS is 

knocked out (Figure 4.5D and E) compared with the parent strain with functional waaG, 

however this single intervention is not sufficient to recreate the phenotype observed with the 

variant rpoC (Figure 4.5B).  
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Figure 4.3  EVA-generated gene regulatory and metabolic networks for genes in Table 3.2. 

A. The full network for all genes of interest: 283 nodes and 283 edges; B. Selected cluster 
from (A) with pykA and mtlD genes; C. The largest cluster in the network contains regulatory 
interactions that connect rcsA and yjbE.  
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Table 4.2  Genes with consistent and statistically significant fold changes for all strain 
contrasts. 

Genes are ordered by the smallest log2 fold change (LFC) among all strain contrasts, 
ascending, with a divider separating genes that had a lower transcript abundance in LAR1 
with genes that had a higher transcript abundance in LAR1. 

b-num Name Product LAR1-ML115 
(min LFC) 

b4026 yjbE extracellular polysaccharide production threonine-
rich protein 

-3.02 

b1060 bssS biofilm regulator -1.78 
b3449 ugpQ glycerophosphodiester phosphodiesterase, cytosolic -1.38 
b1954 dsrA small regulatory RNA -1.32 
b4376 osmY periplasmic protein -1.23 
b2621 ssrA tmRNA -1.21 
b3631 waaG glucosyltransferase I -1.20 
b2392 mntH manganese/divalent cation transporter -0.99 
b1951 rcsA transcriptional regulator of colanic acid capsular 

biosynthesis 
-0.89 

b1950 fliR flagellar export pore protein -0.89 
b4092 phnP 5-phospho-alpha-D-ribosyl 1,2-cyclic phosphate 

phosphodiesterase 
-0.67 

b3317 rplB 50S ribosomal subunit protein L2 -0.58 
b2937 speB agmatinase -0.52 
b0244 thrW Thr tRNA -0.47 
b3924 fpr ferredoxin-NADP reductase -0.44 
b0880 cspD inhibitor of DNA replication, cold shock protein 

homolog 
-0.43 

b0143 pcnB poly(A) polymerase -0.41 
b0345 lacI lactose-inducible lac operon transcriptional repressor -0.33 
b2558 mltF membrane-bound lytic transglycosylase F, murein 

hydrolase 
0.29 

b2509 xseA exonuclease VII, large subunit 0.41 
b2686 emrB multidrug efflux system protein 0.42 
b2913 serA D-3-phosphoglycerate dehydrogenase 0.43 
b1854 pykA pyruvate kinase II 0.51 
b2603 yfiR putative periplasmic inhibitor of YfiN activity 0.69 
b3600 mtlD mannitol-1-phosphate dehydrogenase, NAD-

dependent 
0.75 

b2235 nrdB ribonucleoside-diphosphate reductase 1, beta subunit, 
ferritin-like protein 

0.76 

b3845 fadA 3-ketoacyl-CoA thiolase (thiolase I) 0.76 
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Table 4.2 (continued) 

 

 

b-num Name Product LAR1-ML115 
(min LFC) 

b3559 glyS glycine tRNA synthetase, beta subunit 0.90 
b0106 hofC assembly protein in type IV pilin biogenesis, 

transmembrane protein 
0.91 

b0159 mtn 5'-methylthioadenosine/S-adenosylhomocysteine 
nucleosidase 

0.93 

b0107 hofB T2SE secretion family protein; P-loop ATPase 
superfamily protein 

0.94 

b1476 fdnI formate dehydrogenase-N, cytochrome B556 
(gamma) subunit, nitrate-inducible 

0.97 

b2584 pka protein lysine acetyltransferase 1.12 
b3846 fadB fused 3-hydroxybutyryl-CoA epimerase/delta(3)-cis-

delta(2)-trans-enoyl-CoA isomerase/enoyl-CoA 
hydratase/3-hydroxyacyl-CoA dehydrogenase 

1.16 

b2605 yfiB OM lipoprotein putative positive effector of YfiN 
activity 

1.24 

b0158 btuF vitamin B12 transporter subunit: periplasmic-binding 
component of ABC superfamily 

1.35 

b1475 fdnH formate dehydrogenase-N, Fe-S (beta) subunit, 
nitrate-inducible 

1.40 

b2604 yfiN putative membrane-anchored diguanylate cyclase 
with an N-terminal periplasmic domain 

1.43 
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Figure 4.4  EVA-generated network with RNA-seq data. 

One level of gene regulation represented using mutated features as seed nodes in the 

network. Blue node borders correspond to mutated features. Colored interaction arrows 

show gene regulation; red = activation, green = repression. Node coloring depicts the strain 

contrast for the production condition during the exponential growth phase: log2 fold change 

for LAR1+pJMY-EEI82564 – ML115+pJMY-EEI82564 at 12 hours. Emphasized node 

borders indicate p-value < 0.05.  
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Figure 4.5  The effect on specific growth rate of ∆bssS in 0 and 10 mM C8. 

A. growth rate for the parent strain with repaired waaG; B. growth rate for the parent strain 
with repaired waaG and rpoC mutation; C. growth rate for the parent strain with repaired 
waaG and bssS knockout; D. the effect of the bssS knockout on growth in 0 mM C8; E. the 
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Conclusions 

In this work we have performed RNA-seq experiments for the parent and evolved 

strains and identified genes that are consistently differentially expressed in different growth 

phases and in control and fatty acid production conditions. We additionally examined genes 

with significant strain contrasts and selected candidates for further study. We modified EVA 

to construct a gene regulatory and metabolic network using this set of genes as seeds. From 

this network, we were able to find additional connections through gene regulation among 

genes of interest. The network also highlighted metabolic pathways that could be affected by 

differentially expressed genes. We also visualized fold-change data on the EVA network for 

the BasR regulon. 

We have begun constructing gene knockout strains based on our list of candidate 

genes to test their effect on growth with exogenous C8. Thus far, ∆bssS has been tested and 

found to improve specific growth rate but does not account for the improvement we see from 

the rpoC mutation. The effects of the variant basR and rpoC genes on transcription may be 

broad and could involve multiple genes and pathways. We have presented our 

bioinformatics-based approach to identifying gene candidates for further investigation based 

on relationship to mutated features, differential expression in transcriptomic analysis, and 

gene regulation and metabolic network relationships. 
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CHAPTER 5.    SUMMARY, FUTURE WORK, AND CONCLUSIONS 

Microbial evolution as a strategy for strain engineering has been shown to be an 

effective tool for enhancing tolerance of E. coli to carboxylic acids for greater yields, titers, 

and productivity. We also examined case studies that employed this strategy for studying 

antibiotic resistance in bacteria. In both cases, continuous fermentation under selective 

pressure is used to obtain strains that exhibit a desired phenotype. Such evolution studies 

may be performed iteratively and can also include targeted genetic interventions. In all cases, 

the metabolic evolution itself is a black box technique and the mutations acquired during the 

experiment are not known until genomes of evolved strains are sequenced. Reverse 

engineering of evolved strains necessary to identify genetic variations from the parent strain 

and discern which mutations are relevant the evolved phenotype and by what mechanisms. 

The task of reverse engineering evolved strains remains a significant challenge. 

Inconsistencies among short read assembly software, sequencing errors, and complex 

mutations such as rearrangements and large indels can lead to inaccurate mutation 

predictions. Verification of predicted mutations by PCR and Sanger sequencing is necessary 

to have confidence in genome annotations. 

This work has focused primarily on characterizing mutations identified in 

comparative genomic analysis with the goal of relating genotype to phenotype, a significant 

challenge in microbial engineering. Chapter 2 present the software developed to work toward 

this goal and support reverse engineering efforts. We present a strategy that is appropriate for 

many types of mutations, but could be extended as analysis methods advance. While we built 

our software for E. coli, the same concepts apply to other bacterial systems. To implement a 

version of EVA for a different organism, a complete genome, gene models, and sufficient 
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gene regulation and metabolic pathway data are required. Organisms without well-

characterized gene regulation and metabolism could still benefit from the annotation and 

sequence analysis components of EVA. Even for E. coli, we must rely on incomplete models 

of gene regulation and cellular metabolism, and so our results are also incomplete. The best 

publicly available databases for this model organism may not include some published 

regulatory links, such as was the case for the BasR regulon. Other regulation links may only 

be from computation predictions based on sequence similarity to known binding sites. 

There is the additional challenge of presenting meaningful biological network 

information without including too much extraneous information. To provide options for 

biologists, EVA generates biological networks in three ways: a complete network with all 

available regulatory links, a mutation-interaction network with all nodes and edges reachable 

by two or more mutations, and a shortest-path network with minimal paths between mutated 

features. Additional network analysis and statistics could be derived from these networks, an 

analysis that could be increasingly valuable as the number of mutations in an experiment 

grows or in cases where additional regulatory steps are included in the network. 

In Chapter 3, we used the EVA software to aid in mutation interpretation for E. coli 

evolved for improved octanoic acid tolerance. In Chapter 4, we continued our reverse 

engineering efforts with an associated RNA-seq study. The utilization of transcriptomic and 

other omics data in reverse engineering microbial strains provides valuable information about 

cellular activities which cannot be known from genomics studies alone. The gene regulatory 

and metabolic networks generated by EVA and using mutated features as seed nodes are 

readily integrated with transcriptomics data. In addition, we modified EVA to generate new 
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networks from differentially expressed genes and were able to identify relationships among 

these genes that may point to the underlying mechanisms responsible for phenotype. 

It would be interesting to incorporate other types of omics data (e.g., proteomics, flux 

analysis) into our analysis in the future. Additionally, using EVA networks to build simple 

models for gene activation and repression could aid in interpretation and potentially identify 

missing regulatory links. And finally, utilizing EVA for rational engineering could provide 

researchers with multiple targets for incorporating a desired genomic intervention, such as 

promoter or transcription factor binding site modification.
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APPENDIX A.    IDENTIFICATION OF MUTATIONS IN EVOLVED BACTERIAL 
GENOMES 

Methods book chapter in: Hal S. Alper (ed.), Systems Metabolic Engineering: 

Methods and Protocols, Methods in Molecular Biology, vol. 985:249-267 

Liam Royce, Erin Boggess, Tao Jin, Julie Dickerson, Laura Jarboe 

Summary 

Directed laboratory evolution is a common technique to obtain an evolved bacteria 

strain with a desired phenotype. This technique is especially useful as a supplement to 

rational engineering for complex phenotypes such as increased biocatalyst tolerance to toxic 

compounds. However, reverse engineering efforts are required in order to identify the 

mutations that occurred, including single polymorphisms (SNPs), insertions/deletions 

(indels), duplications, and rearrangements. In this protocol, we describe the steps to 1) obtain 

and sequence the genomic DNA 2) process and analyze the genomic DNA sequence data, 

and 3) verify the mutations by Sanger resequencing. 

 

Introduction 

Bacteria acting as biocatalysts for production of biorenewable fuels and chemicals are 

often faced with product-mediated inhibition. For example, ethanol was shown to negatively 

impact growth and structure of E. coli and yeast (Ingram & Buttke, 1984; Trinh, Huffer, 

Clark, Blanch, & Clark, 2010); the effects of succinate were revealed on the membrane and 

enzymes of yeast (Duro & Serrano, 1981; Smith, Janknecht, & Maher, 2007); butanol was 

shown to inhibit the growth and sugar uptake rate of Clostridium acetobutylicum (Schwarz, 

Kuit, Grimmler, Ehrenreich, & Kengen, 2012; Winkler & Kao, 2011). 
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Lignocellulosic biomass has been extensively utilized as a source of carbon and 

energy for the fermentative production of ethanol and other biorenewable fuels (Jarboe, 

Grabar, Yomano, Shanmugan, & Ingram, 2007; Jørgensen, Kristensen, & Felby, 2007; C. Li, 

Qian, & Zhao, 2008). However, the sugar streams released from this biomass frequently 

contain inhibitory contaminants that inhibit the growth and substrate utilization of 

microorganism (Miller, Jarboe, Turner, et al., 2009; Zaldivar & Ingram, 1999; Zaldivar, 

Martinez, & Ingram, 1999). 

Thus, the fermentative production of biorenewable fuels and chemicals is associated 

with both inhibitory contaminants in the feedstock and inhibitory products; in these cases, it 

can be sometimes useful to increase the tolerance of the biocatalyst to these inhibitory 

compounds. Metabolic evolution is frequently used to increase the tolerance of bacteria to 

inhibitory compounds. Directed evolution is when researchers can enhance desired features, 

such as increased tolerance of inhibitory compounds, by selecting for random mutations 

under appropriate selective pressure. While metabolic evolution is sufficient to acquire a 

strain with the desired phenotype, it is often of interest to identify the mutations acquired 

during the evolutionary process. 

Reverse engineering can yield a roadmap for reproducing the desired phenotype or 

behavior in other biocatalysts. This method begins with whole-genome sequencing using 

high-throughput sequencing technology, such as Illumina's sequencing by synthesis 

technique. Bioinformatics methods known as de novo assembly and mapping (or alignment) 

are used to analyze the short read data and reconstruct the genome (Langmead, Trapnell, 

Pop, & Salzberg, 2009; H. Li & Durbin, 2009; H. Li et al., 2009). By obtaining DNA 

sequences of the parent and evolved organism genomes, it is possible to perform a 
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comparative analysis and identify variations in the evolved strain. Isolation of bacteria 

genomes is a standard procedure. Sequencing platforms are changing rapidly in their 

throughput and chemistry to increase availability and fidelity of sequence data (Metzker, 

2010). As sequencing data becomes more readily available, there are many challenges to the 

processing and analysis of sequence data, which is costly and time consuming. Thus, 

automation by programs alleviates the burden of manual analysis. The finishing step and gap 

filling in DNA sequence analysis is the bottleneck in automation (D. Gordon, Abajian, & 

Green, 1998). In the recent decade, there has been a great amount of improvement in 

automating the process with computer programs; however, this step still requires human 

intervention. 

As the genotype of the evolved strain is defined, hypotheses are formed regarding the 

roles of mutations in the context of the phenotype. As researchers elucidate which mutations 

improve fitness, the intent is to infer the mechanisms that lead to the increased tolerance to 

toxicity and then proceed with rational engineering techniques (Jarboe et al., 2007; Miller, 

Jarboe, Yomano, et al., 2009). This can also enable to identify the function of the 

undercharacterized enzymes and pathways (Jarboe, 2011). However, the focus of this chapter 

is to describe the use of genome sequence analysis to identify the mutations acquired in an 

evolved strain. Determination of which of these mutations impact the phenotype and 

understanding the mechanism of the mutation’s function is outside the scope of this chapter. 

 

Materials 

All materials used are standard kits and reagents. Software for high throughput 

sequence analysis generally requires UNIX/Linux operating systems with a large 

amount of memory and storage. Both free and commercial software packages are available 
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for analyzing high-throughput sequencing data. All software included in this protocol is open 

source unless otherwise noted. 

 

Genomic DNA Purification and Sequencing 

1. Lauria Broth (LB) for growing bacteria cells: dissolve at 25 g/L in nanopure water 

and filter-sterilize using a 0.22 CA bottle top filter. 

2. 1.5mL microfuge tubes and 50mL centrifuge tubes for sample processing. 

3. QIAGEN DNeasy® Blood & Tissue kit for genomic DNA isolation and purification. 

Buy RNase A and 100 % ethanol separately. 

4. Accublock Digital Dry Bath for temperature-controlled incubation. 

5. NanoDrop Spectrophotometer for genomic DNA quantification and quality control. 

6. Illumina cBot System and Illumina TruSeq PE Cluster Kit -GA for cluster generation, 

Illumina GAII sequencing instrument for short-read whole genome sequencing 

(available at a university core facility, prices vary). 

 

Bioinformatics Software for High-Throughput Sequence Data 

1. Galaxy is a scientific workflow system for high-throughput sequence data 

preprocessing, integration, and analysis. A free public server is available, but most 

users will need to download and install the open source Galaxy software locally due 

to the upload limitations and to preserve data privacy. UNIX/Linux and Mac OS X 

are supported and a recent version of Python must be installed (Blankenberg et al., 

2010; Giardine et al., 2005; Goecks, Nekrutenko, Taylor, & Team, 2010). 
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2. FastQC provides quality control checks for raw sequence data and generates 

summary graphs and basic statistics. FastQC is available through the Galaxy interface 

or for download and independent installation (Andrews, 2012). 

3. FASTX-Toolkit is a collection of scripts for manipulating raw sequence data. It 

includes conversion, trimming, and filtering tools and will generate some quality 

statistics. The FASTX-Toolkit is distributed with Galaxy or can be downloaded and 

installed independently (A. Gordon). 

4. Mapping software: Bowtie, Bowtie 2, and BWA are popular short read aligners that 

distributed under the GPLv3 license. Bowtie and BWA are distributed with Galaxy. 

Memory requirements vary by algorithm and input data, but at least 2GB memory 

required and at least 4GB is recommended. Multiple processors can also improve 

alignment speed. It is critical to read the manual for mapping software because 

different parameters will generate different alignments. 

5. de novo assembly software: Velvet and ABySS (available for download and 

distributed under the GPLv3 license) are examples the many available de Buijn 

graph-based assemblers (Simpson et al., 2009; Zerbino & Birney, 2008). Other 

assemblers that use an overlap/layout/consensus approach are available, but take 

considerably longer to assemble short reads and are not considered for this protocol. 

While many assemblers support 32-bit platforms, a 64-bit machine is recommended 

and memory requirements vary by algorithm, short read data, and selected k-mer 

length. It is critical to read the assembler manuals because different parameters 

generate different contigs/scaffolds. 
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6. Basic Local Alignment Search Tool (BLAST) is the most widely used sequence 

similarity tool. A web interface is available through NCBI, but a local installation of 

the BLAST+ open source applications provide a command line usage (Camacho et 

al., 2009). 

7. SAMtools is a collection of utilities for manipulating alignments. BCFtools, which is 

distributed with SAMtools, performs variant calling. SAMtools is distributed with 

Galaxy and can also be independently installed (H. Li & Durbin, 2009; H. Li et al., 

2009). 

 

Mutation Verification 

1. Primer3 software (distributed under GPLv2) for primer design and primers (Rozen & 

Skaletsky, 2000). 

2. Plate Spinner Centrifuge. 

3. Commercial 10mM Tris-HCl, pH=8.5 buffer. 

4. 96-well PCR plates. 

5. Polymerase Chain Reaction (PCR) materials: QIAGEN® Taq PCR Master Mix Kit or 

QIAGEN® LongRange PCR Kit and Strain Genomic DNA (from material 2.1.1). 

6. Gel loading materials: Blue (6X) Gel Loading Dye and ethidium bromide, 1% 

Solution/Molecular Biology, for visualization of PCR products and 1 Kb Plus DNA 

Ladder for size determination. 

7. 50X TAE: 242g Tris base, 57.1ml Glacial Acetic Acid, 18.6g EDTA dissolved in 

900mL nanopure water. Add make up nanopure water to 1L. 

8. TAE DNA gel for separating DNA fragments: dissolve 1% W/V Agarose in 1X TAE. 

9. Gel electrophoresis equipment. 
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10. PCR Purification Kit to purify PCR products. 

11. DNA sequence finishing software Phred/Phrap/Consed or CodonCode Aligner 

(Ewing & Green, 1998; Ewing, Hillier, Wendl, & Green, 1998; D. Gordon et al., 

1998). 

12. Thermal Cycler for generating PCR products. 

 

Methods 

Obtaining the evolved strain and interpretation of mutation function is outside the 

scope of this paper. Here we restrict this protocol to DNA purification, genome sequencing, 

analysis and verification. 

 

Obtain Sequence Data 

1. After obtaining an evolved bacteria colony isolate, prepare to use the QIAGEN DNeasy® 

blood & tissue kit. Other commercial kits can also be used to isolate the genomic DNA. 

First, grow the parent strain (before the evolution experiment) and the evolved strain 

overnight in 25 mL LB. 

2. Follow the QIAGEN DNeasy® Blood & Tissue kit protocol for gram-negative bacteria. 

2.1. Harvest cells (maximum 2 x 109 cells) in 50mL centrifuge tube by centrifuging for 

20 minutes at 4°C, ~5,000xg. Discard supernatant (see Note 1). 

2.2. Resuspend pellet in 180 µl Buffer ATL and transfer to a microcentrifuge tube. 

2.3. Add 20 µl proteinase K. Mix thoroughly by vortexing, and incubate at 56°C in a 

temperature controlled waterbath until the cells are completely lysed (3h). 

Vortex every hour. 

 



www.manaraa.com

 133 
 

2.4. Add 20 µl RNase A, briefly vortex, and incubate at room temperature for 2 

minutes. 

2.5. Add 200 µl Buffer AL, and mix thoroughly by vortexing. Then add 200 µl 100 

% ethanol and mix again thoroughly by vortexing (see Note 2). 

2.6. Pipet the sample into the DNeasy Mini spin column and centrifuge at maximum 

speed for 1 minute. Discard flow-through (see Note 3). 

2.7. Add 500 µl Buffer AW1 and centrifuge at maximum speed for 1 minute. 

2.8. Add 500 µl Buffer AW2, and centrifuge at maximum speed for 1 minute. 

Discard flow-through and centrifuge again at maximum speed for 1 minute to dry the 

column (see Note 4). 

2.9. Place the DNeasy Mini spin column in a clean 1.5 ml microfuge tube, and pipet 100 

µl Buffer AE directly onto the DNeasy membrane. Incubate at room temperature for 

1 min, and then centrifuge at maximum speed for 1 min to elute. Add another 100 µl 

Buffer AE, incubate for 1 minute, and then centrifuge at maximum speed for 1 

minute (see Note 5). Freeze DNA at -20°C or proceed directly to the next step. 

3. Check the quality of the genomic DNA on a nanodrop. First, blank the spectrophotometer 

with 1 µl nanopure water. Wipe away the water, then add the sample. One should see a 

smooth profile with a minimum at 230nm and a maximum at 260nm. Typical values 

should be ~20 µg genomic DNA, 280/260 value of ≥ 1.8, and a 260/230 value of ≥ 2. If 

the quality is too low, repeat the wash steps 2.7-2.9 with a new column. 

4. Submit ≥ 2 µg/sample genomic DNA (at least 1 parent strain sample and 1 evolved strain 

sample) to a core facility for whole genome sequencing. There are many options to 

choose which sequencing instrument and which sequencing method; currently the DNA 
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core facility at Iowa State University has a GAII sequencer from Illumina, INC. 75-cycle 

paired-end sequencing is recommended as the researcher obtains more reads at a higher 

quality. To date, Illumina offers 150-cycle paired-end data with the GAII sequencer and 

100-cycle paired-end data on their HiSeq instrument. If submitting more than one sample, 

indexing is the best option as one pays only for one sequencing lane. Indexing allows to a 

maximum of 12 samples in a single lane. The workflow of the Illumina platform is shown 

in Figure 1. Refer to the Illumina website for their sequencing technology: 

http://www.illumina.com/technology/sequencing_technology.ilmn (see Note 6). 

 

Preprocess Sequence Data 

High throughput sequence data is most commonly stored in FASTQ format. FASTQ 

format represents each read as a set of lines: header, sequence, sequence ID (optional), and 

quality scores in ASCII encoding. These text files typically have a .fq, .fastq, or .txt 

extension. 

1. Before beginning analysis, identify what quality scoring encoding is associated with the 

raw data. Different Illumina genome analyzer pipeline software versions use different 

scoring scheme variations (e.g., Illumina 1.3+, Illumina 1.5+, and Illumina 1.8+). If there 

is difficulty identifying which encoding is used, FastQC includes this in its output. 

Software user manuals will specify if a particular scoring scheme is expected as input and 

it may be necessary to perform a conversion prior to analysis using Galaxy, the FASTX-

Toolkit, or using a “Bio*” library in the language of your choice (e.g., BioPerl, 

BioPython, BioRuby, BioJava). 
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2. Use FastQC to perform an initial quality assessment of raw data. Launch the FastQC GUI 

and open FASTQ data files to generate all FastQC reports at once. Reports and graphs are 

presented in HTML format and can be saved for reference. 

Examine per-base quality, per-sequence quality, per-base content, and length 

distributions (not applicable for Illumina reads). Also check for overrepresentation of 

sequences and if they correspond to contaminants or PCR artifacts (in addition to 

common artifacts provided by FastQC users may supply sequences of potential 

contaminants to screen for). 

Use the summary icons (green: normal, orange: slightly abnormal, and red: very unusual) 

as guidelines in the following preprocessing steps. It is important to acknowledge that not 

all preprocessing steps will be necessary for all data and also that having small 

abnormalities may be acceptable in the context of the data and should not prevent a 

researcher from proceeding with analysis. 

3. Perform read trimming using the FASTX-Toolkit if necessary. Read quality deteriorates 

with position and base calls near the end of a read are more prone to error. An appropriate 

length to trim may be determined from FastQC output. Use the fastx-trimmer 

command from the FASTX-Toolkit: 

$ fastx_trimmer [-f N] [-l N] [-i INFILE] [-o 

OUTFILE] 

Where[-f N] specifies the first base to keep (default is 1), [-l N] specifies the last 

base to keep (default is entire read), INFILE specifies the FASTQ file and OUTFILE is 

the name to give the trimmed data file. More advanced techniques allow for adaptive read 
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trimming, however reads of varied length may not be acceptable as input for all analysis 

software. 

4. Filter reads by overall quality with the FASTX-Toolkit: 

$ fastq_quality_filter [-q N] [-p N] [-i INFILE] 

[-o OUTFILE] 

The minimum quality score to keep is[-q N] and [-p N]is the minimum percentage 

of bases that must have [-q] quality. 

5. Remove sequencing artifacts, described as reads that are predominantly one base (e.g., 

AAAAAAAAAAAAAAAACAAACA), using the FASTX-Toolkit: 

$ fastx_artifacts_filter [-i INFILE] [-o OUTFILE] 

Where INFILE specifies the FASTQ file and OUTFILE is the name to give the filtered 

data file. 

6. Remove adapters sequences (identified as overrepresented sequences in the FastQC 

report or defined in protocol) with the FASTX-Toolkit: 

$ fastx_clipper [-a ADAPTER] [-l N] [-i INFILE] [- 

o OUTFILE] 

Where [-a ADAPTER] is the adapter sequence that is to be removed from 3'-end of 

sequences, [-l N] is the minimum length of reads to keep in the dataset (default is 5), 

INFILE specifies the FASTQ file, and OUTFILE is the name to give the filtered data 

file. 

7. Resubmit filtered and trimmed data to FastQC to verify improved data quality and 

recalculate data summary statistics before proceeding with analysis. 
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Map Short Reads to Reference Genome 

1. Build a reference index (using the reference genome in FASTA format) using the 

alignment algorithm of your choice, e.g., 

$ bwa index [-p prefix] [-a algoType] ref.fa # BWA 

$ bowtie-build [options]* ref.fa <prefix> # Bowtie 

$ bowtie2-build [options]* ref.fa <prefix> #Bowtie 2 

Where ref.fa is the reference genome in FASTA format, prefix is the prefix of the 

output database and also the database filename. Additional options are defined in the 

corresponding user manuals. Using the genome of the parent strain as the reference yields 

the best alignments. If the genome of the parent strain has not been sequenced, download 

the genome of the wild-type laboratory strain from a public online database such as NCBI 

RefSeq. One benefit of using the wildtype genome as reference is the ability to easily 

leverage existing annotation in publically available databases (e.g., BioCyc). 

2. Align reads to the reference and generate a SAM file. The SAM file format is a TAB-

delimited text file that contains information such as alignment position (or '*' for 

unaligned reads) and mapping quality for each read and is the common output format for 

aligners. SAMtools performs conversions between SAM and a compressed and indexed 

binary format called BAM. 

3. Assess overall alignment quality by reviewing the summary statistics generated by 

mapping software such as the percentage of reads that aligned to the reference genome. 

Use SAMtools to calculate read depths for each position of the genome: 

$ samtools depth aln.sorted.bam > depth.txt 

Where aln.sorted.bam is the sorted BAM file. The output file, depth.txt, 

contains one line for each position in the reference genome. The second column is the 
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coordinate and the third column is the number of reads that cover that position. The 

SAMtools depth utility does not report positions where read depth is zero, thus the 

number of lines in the file is equal to the number of bases where coverage is non-zero. 

Alternative, specify a depth cutoff to ignore very small read depths (i.e., do not consider 

depth = 1 as genome coverage). Calculate base coverage with one of the following: 

$ wc -l depth.txt # depth > 0 

$ awk '$3 > $N {i++} END{print i}' depth.txt# depth > N 

Divide base coverage by genome size to obtain the percentage of the 

genome covered by reads. 

Map quality scores can also be examined by investigating column 5 

(MAPQ) of the SAM file. 

 

De novo Assembly 

De novo assembly and mapping of short reads to a reference sequence are 

fundamentally different analysis procedures. Assembly of the genomes of evolved bacterial 

strains can be used to search for novel insertions and complex mutations that are difficult for 

mapping software to identify. Additionally, results from assembly methods can provide 

support for proposed alignments. 

Assembly of short read data does not use a reference sequence and instead tiles reads 

to generate sequences called contigs. Incorporating the average distance between paired-end 

reads (called the insert size) is used to join contigs into scaffolds. The most important 

parameter in de Bruijn graph based assembly algorithms is the hash length, which is also 

known as the k-mer length. Large k-mer values require longer overlap between reads in order 

for them to be assembled (therefore the k-mer value may not be larger than the read length). 
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Conversely, small k-mer values require short overlap which results in increased sensitivity, 

but decreased specificity. The experimenter must provide the k-value parameter and there is 

no method to find the optimal value. Because of this, it is recommended that researchers test 

multiple k-mers and then compare several assemblies before proceeding. 

1. Assemble short read data with the assembler of your choice. Test multiple k-mer values 

and calculate the total number of contigs, N50, and N90 for each assembly (typically 

reported by assembly software). 

2. Proceed with the “best” assemblies such that the number of contigs is minimized and the 

N50 and N90 are maximized. 

 

Identify Variations in Evolved Strains 

1. Identify single nucleotide polymorphisms (SNPs) and short insertions/deletions (indels) 

for an alignment using SAMtools/BCFtools: 

$ samtools mpileup -uf ref.fa aln.bam | bcftools view -bvcg 

- > var.raw.bcf 

Where ref.fa specifies the reference genome in FASTA format and aln.bam is a 

binary alignment file. The output is a binary file (BCF) for Variant Call Format (VCF) 

TAB-delimited files. VCF is standard for storing information about variants in 

alignment data. 

2. Find large deletions by inspecting of read depth (the number of reads mapped to a 

specific position on the reference genome). Calculate read depth values using SAMtools: 

$ samtools idxstats aln.bam 

Regions with zero or very low read depth may indicate deletions. Determining what 

qualifies as “low” read depth may be aided by examining the read depth distribution. 
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3. Use assembly results to distinguish complex mutations such as large insertions, 

duplications, and inversions that are difficult for mapping algorithms to identify. Align 

contigs to a reference genome or an alignment consensus sequence. First, generate the 

consensus sequence from an alignment file with SAMtools: 

$ samtools mpileup -uf ref.fa aln.bam | bcftools view -cg - 

| vcfutils.pl vcf2fq > cns.fq 

Where cns.fq is the output consensus sequence. Next, BLAST contigs against these 

sequences to reveal sequence variations. Syntenic dotplots can also be used to visually 

identify discontinuities. 

4. If possible, leverage reference genome annotation to form hypotheses about the effects of 

mutation. Verification by targeted sequencing can be used to confirm mutations. More 

advanced experimentation is necessary to confirm hypothesized effects. 

 

Verify Mutations 

1. Obtain a list of mutations from the above analysis and the sequences of the regions of 

interest. 

2. There are two approaches for obtaining primers for PCR: for genes and for noncoding 

regions. 

2.1. For mutated regions containing open reading frames (ORFs or genes), first note how 

large the gene is and round up to the nearest 1,000. Add the additional sequences 

upstream and downstream of the gene equally. Then split the sequence into 1,000 bp 

segments (see Note 7 and Note 8). This method will give you room to pick optimal 

primers to include the entire sequence of interest. Use the Primer3 program to design 

optimal primers whose PCR product size range is 851-1,000 bp in length (see Note 
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9). Paste in the first 1,000 bp sequence, use the other default values, and click “Pick 

Primers”. Select any of the suggested primers, noting where they bind to the template 

and the product size. Add the next 1,000 bp block of sequence and repeat until 

complete. 

2.2. For mutated regions within a non-coding region (NCR), take a 1,000bp segment of 

DNA sequence and set the suspected mutation in the middle (~500bp from the first 

base). This ensures good sequencing data of this region. Use the Primer3 program for 

NCRs the same way for ORFs (see Note 10). 

3. For long sequencing regions (>1kb), the above method will have gaps in the total 

sequence. In order to fill in the gaps, repeat the process with a 500bp offset and choose 

the reverse complement primers that bind in the middle of the sequence. This will also 

increase the fidelity of the sequence data (see Figure 2). 

4. After choosing the primers, order them from an oligo synthesis company. If you have 

multiple primers, a 96-well plate format may be convenient. Resuspend them in either 

nanopure water or 10mM Tris-HCl, pH=8.5 at 100µM, vortex, and centrifuge briefly. 

5. Keep all PCR materials on ice and set up your PCR reaction in a 96-well plate according 

to Table 1. Reserve one well for a negative control PCR (no template, choose any primer 

pair) to check for contamination. Run PCR using a thermocycler according to Table 2. If 

the sequencing region is longer than 1kb, it is possible to make a long PCR product and 

then submit multiple sequencing primers for a single template (up to 5kb) (see Note 11). 

For higher fidelity, especially at longer sequencing templates (>5kb) or difficult 

templates (high GC content), use the QIAGEN® LongRange PCR kit according to Table 

3 and Table 4. 
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6. Check the concentration of the PCR products using a nanodrop (see 3.1.3). Check the 

size of the PCR product on a 1% TAE agarose gel. 

6.1. Melt 1X TAE with 1% agarose gel in a standard microwave. Add 25mL with 2 drops 

of ethidium bromide to a 8.5x10 cm gel casting tray in a gel casting tray holder with 

either an 8 or 15 sample comb (see Note 12). For more samples, use a 17x10 gel 

casting tray with a 26 sample comb. In this case, use 50mL of 1% TAE agarose gel 

with a few drops of ethidium bromide. Allow 30 minutes for the gel to solidify. 

6.2. Remove the comb and the gel casting tray. Place the gel casting tray into the gel box. 

Add 1X TAE until the surface of the gel is covered evenly. 

6.3. Mix standard and samples according to Table 5. Mix the standard and load into the 

first well; perform the same with each sample. Set the voltage to 100, put the top on, 

and click “run” (see Note 13). Wait 45 minutes - 1 hour for the dye to reach the 

bottom. Turn the system off when finished. 

6.4. Use the UV camera to visualize the PCR products. Match the standard with the PCR 

product to determine the approximate size (see Note 14). 

7.  If the PCR worked as expected, submit samples for sequencing by a core facility or 

company. The sample may need to be purified (use a standard PCR Purification Kit 

protocol) before submission (check the submission requirements). Use the sequencing 

primers as described in Figure 2 (see Note 15). The sequencing data is returned as .ab1 

trace files and .seq files. One can view the .seq files in any text editor program. More 

advanced analysis requires the use of .ab1 trace files and DNA sequence finishing 

software. 
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8. In CodonCode Aligner (or any sequence finishing software), load the forward and reverse 

sequence of the samples. The first 20 bases and the last few bases (depends on the 

sequence length) have low quality scores. Highlight the samples and choose “clip ends” 

using the default parameters. Highlight the overlapping samples and assemble them into 

contigs (see Figure 3). The consensus sequence is shown at the bottom, where the base 

with the highest quality score is chosen. Here one can manually edit the sequence and call 

individual bases that are difficult. If there are discrepancies, open the trace files again to 

determine which is correct (see Note 16). 

9. Use the BLASTn alignment tool (choose “Align two or more sequences” option) to align 

the consensus sequence to the parent strain and wildtype sequence. Sequences that are not 

matching or are unknown can be found using the NCBI nucleotide BLAST database. 

Notes 

1. The methods described here are developed in our lab, unless it is a published protocol 

from Illumina, INC. or commercial kit protocols. The steps using commercial kits are the 

published protocols of the kit manufacturer, where special deviations are in italics. 

Harvesting cells at 4°C, 4,000rpm prevents lysis and increases DNA yields. Do not 

overload the DNA column. Overloading the column causes blockage of the membrane 

and decrease yields. To obtain the maximum cell count per DNA column, first obtain a 

correlation of OD (we use 550 nm for E. coli) to C cells/mL (outside the scope of this 

protocol). Next, use to calculate the amount of cells you need: 

!	#	$%&'())*

'	'())* +,- #	$%	+,	
= /	0122% (1) 

For example, if C = 1.69 x 108, we have !	#	$%&'())*

$.45	'())* +,- 	#	$%	+,	
= 1.18	0122%. Therefore, 10 

mL, OD550 1.18 is required to obtain 2 x 109 cells. 
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2. The ethanol, sample and Buffer AL need to be mixed immediately and thoroughly by 

vortexing. Otherwise local precipitation may occur in the sample, which will decrease 

yields. 

3. Buffer AL and Buffer AW1 are not compatible with bleach and may form decomposition 

products. 

4. The column must be dried before eluting the DNA. Residual ethanol will decrease yields. 

5. Subsequent elution steps will increase DNA yields, but decrease concentration. Do not 

elute more than 200 µl into a single 1.5 ml microfuge tube. 

6. The insert sizes are less than 800 bp. We typically use 400-500 bp. 

7. Due to possible polar effects from upstream mutations, the researcher may want to 

include the complete sequence from the promoter to the stop codon of the gene of 

interest. The sequencing length may be prohibitive and costly, so it is up to the researcher 

to include the upstream sequences along with the gene of interest. This is especially true 

if there are many genes in between the annotated promoter sequence and the gene of 

interest. 

8. For example, the E. coli gene carB is 3,222 bp; therefore, round up to 4,000 bp by using 

this formula: 4,000-3,222=778/2=389 bp. Add 389 bp upstream and downstream of the 

carB gene. The total sequence is therefore 4,000 bp with the carB gene in the middle. 

This is enough to include a sequencing primer region and the promoter sequence 42bp 

from the translational start. 

9. The limit of good quality Sanger sequence reads is about 1,000 bp. The Primer3 program 

chooses optimal primers and performs in silico PCR to obtain PCR products in the 

desired range. This ensures that each primer has approximately the same length and 
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melting temperature. It is good to also select alternate primers in case the primers weakly 

bind to the template. If the region is heavily mutated, it may be difficult choosing the 

correct primers. 

10. NCRs may include long blocks of A-T rich sequences and therefore optimal primers may 

not be available. In this case, adjust the target sequence, so that the mutated region is 

closer to either the 5’ end or 3’ end. This way one can obtain optimal primers that can be 

used for sequencing this region. 

11. QIAGEN® Taq DNA Polymerase is for general applications. For longer PCR products, 

the probability for incorporation of the incorrect base increases (false SNP); therefore, the 

use of a higher fidelity enzyme (i.e., QIAGEN® LongRange PCR kit) is recommended. 

Higher fidelity PCR enzymes are recommended for SNP identification and resequencing 

applications. It depends on the researcher which option is best. For extremely long PCR 

(10kb-40kb), the researcher is referred to the QIAGEN® LongRange PCR Handbook for 

an alternate PCR protocol. 

12. Ethidium bromide is toxic and mutagenic. Always wear proper protection equipment. 

13. Make sure that the diode colors match (black with black and red with red) and that the 

black one is at the top. This ensures that the DNA samples will run through the gel in the 

correct direction. Also the dye should not run off the gel, otherwise one may lose the 

samples. 

14. If DNA bands are not visible, soak the gel for 1 hour in 1X TAE with ethidium bromide. 
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15. Use the following formula to calculate the number of sequencing reactions: 

#Quality	Sequences = 	
FG

$%%%
∗ 2 − 1 (2)  

16. Common mismatches occur when the local sequence contains blocks of the same base 

(i.e., A block of 6 A’s in a row), or the ends are overlapping with one sample containing 

poor quality bases. This step may not be necessary as the consensus sequence is called 

according to quality. If SNPs or indels are discovered, this step becomes much more 

difficult, especially if there are duplication events. 
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Tables 

Table 1. A Typical 20 µL PCR Reaction 

Material Stock Concentration Amount to add Final concentration 
Nuclease-free water - Variable - 
Primer A 100 µM 0.1 µL 500 nM 
Primer B 100 µM 0.1 µL 500 nM 
Template Variable Variable 50-500 ng 
2X QIAGEN® Taq 
PCR Master Mix 

2X 10 µL 1X or 2.5U Taq + 200 
µM dNTP 

 

Table 2. Typical PCR Reaction Conditions 

Step Time Temperature Comments 
1. Denaturation 4 min 94°C Denaturation of template and primer-

dimers 
2. Denaturation cycle 0.5 min 94°C Or 5°C below the lowest primer 

melting temperature 
3. Annealing cycle 0.5 min 55°C  
4. Extension cycle 1 min/kb 72°C  
5. Repeat steps 2-4   Repeat 30 times 
6. Final extension 10 min 72°C  
7. End infinite 5°C  

 

Table 3. 20 µL QIAGEN® LongRange PCR Kit (up to 10kb) Setup 

Material Stock Concentration Amount to add Final concentration 
Nuclease-free water - Variable - 
Primer A 10 µM (diluted 10 fold) 0.8 µL 400 nM 
Primer B 10 µM (diluted 10 fold) 0.8 µL 400 nM 
Template Variable (diluted 10 

fold) 
Variable 0.1-10 ng 

dNTP mix 10 mM of each base 1 µL 500 µM of each base 
QIAGEN® LongRange 
PCR buffer 

10X 2 µL 1X or 2.5U Mg2+ 

QIAGEN® LongRange 
PCR enzym Mix 

100U (total enzyme 
mix) 

0.16 µL 0.8U 
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Table 4. QIAGEN® LongRange PCR Reaction Conditions 

Step Time Temperature Comments 
1. Denaturation 3 min 93°C Denaturation of template and primer-

dimers 
2. Denaturation cycle 15 s 93°C Or 5°C below the lowest primer 

melting temperature 
3. Annealing cycle 0.5 min 62°C  
4. Extension cycle 1 min/kb 68°C  
5. Repeat steps 2-4   Repeat 35 times 
6. End infinite 4°C  

 

Table 5. Recipe for Mixing Standard and Samples 

Standard Samples 
Standard 1 µL PCR product 8 µL 
Dye 2 µL Dye 2 µL 
Nuclease-free water 7 µL Nuclease-free water - 
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Figures 

Figure 1. Illumina sample preparation Protocol 

Illumina sample preparation protocol, adapted from the Illumina guide Preparing Samples 

for Sequencing Genomic DNA. See the Illumina guidebooks for their detailed protocols. 

 

 



www.manaraa.com

 153 
 

Figure 2. Schematic for designing sequencing Primers for long sequencing regions 

The average quality score is plotted for each individual base along the template. A quality 

score of 20 or greater is considered acceptable. Choose the forward primer binding to the 

lagging strand to cover the general area (top). To fill the gaps, use the reverse primer 

binding to the leading strand, with a 500 bp offset. In this example, the forward sequencing 

primers will bind to bases 1, 1000, 2000, & 3,000. The reverse sequencing primer will bind 

to bases 3,500, 2,500, & 1,500. 
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Figure 3. Contig assembly in CodonCode Aligner 
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APPENDIX B.    E. COLI VARIANT ANALYSIS (EVA) USER GUIDE 

Software Requirements 

EVA requires Java to be installed as well as access to a copy of the RegulonDB 

database and the EVA supplementary database. Additionally, Provean and Vienna RNA 

packages must be installed for various analyses to be performed. Networks generated by 

EVA can be viewed using various visualization software. EVA provides a custom style for 

use with Cytoscape. 

Commands 

 

EVA: E. coli Variant Analysis 1.0 

Annotate, analyze, and prioritize E. coli mutations in comma separated value (.csv) files, text 

(.txt) files, and GenomeDiff (.gd) files. 

 

Usage: java -jar eva.jar -d derivative1.gd [-d derivative2.gd...] [-p parent1.gd...] [options] 

java -jar eva.jar -r N [options] 

 

Options: 

File 

-d, --derivative <file_path> path to CSV file containing sequence variations in derivative 

(i.e., evolved) strain 

-p, --parent <file_path> Path to CSV file containing sequence variations in parent (i.e., 

ancestral) strain 
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-r, --random <integer> Run EVA for N random mutations instead of importing from 

file(s) 

-o, --output <path>  Path to desired project output directory (DEFAULT = output) 

 

Annotation 

--exact    Annotate all features in large mutations that regulate 1+ 

features outside the mutation (DEFAULT = ignore non-coding features in large mutations) 

--large_mutation <integer> The size (in bp) for which to consider a mutation "large" 

(DEFAULT = 1000) 

 

Analysis 

--noRNA    Do not predict optimal secondary structures or 

minimum free energy for RNA features 

--noAA    Do not run PROVEAN analysis on variant amino acid 

sequences 

--provean_threshold <double> Cutoff PROVEAN score for assigning HIGH priority. 

Scores less than or equal to this value are predicted to be damaging. (DEFAULT = -2.5) 

--num_threads <integer>  Number of threads to use in BLAST search (DEFAULT 

= 1) 

--maxRNA <integer>   Maximum length of RNA to submit for RNA analysis. 

(DEFAULT = 1000) 
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--deltaMFE <double>   Cutoff change in MFE for assigning HIGH priority, in 

standard deviations. Final cutoff is calculated per RNA sequence. Cannot be used with --

edit_distance. (DEFAULT = 1) 

--edit_distance <integer>  Use Levenshtein distance between predicted optimal 

structures instead of free energy calculations. Cannot be used with --deltaMFE_threshold. 

Network 

--full_network    Construct network with all features and links 

(DEFAULT = abbreviated network that consolidates select interactions) 

--regulatory_steps <integer>  Number of regulatory steps to incorporate when 

building network (DEFAULT = 1) 

--derivative_networks   In addition to a network formed from all samples, 

construct a network for each derivative from mutations that are not common to that 

derivative and parent sample(s) 

 

Help 

-h, --help    Print help and exit 

 

Multiple parent and derivative files may be submitted at once. At least one derivative file is 

required to run EVA. 

 

CSV files must contain one mutation per line: 

POS,REF,ALT 
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where POS is the position on the genome, REF is the reference DNA sequence, and ALT is 

the alternate DNA sequence. 

 

Output files for mutation analysis and network generation can be found in the specified 

output directory. 

 

EVA.out is a tab delimited text file containing the results of the EVA analysis. Additional 

files for network and PROVEAN analysis are located in their respective directories. 

 

Networks are formed from seed nodes representing features that correspond to mutations that 

are not present in all samples (if more than one sample is imported). 

 

Additional configuration options can be found in the config.properties file. 

 

Configuration 

Config.properties file: 

# The name of the installed RegulonDB database 
RegulonDB_database=regulondb94 
 
# The name of the installed EVA database (e.g., eva) 
EVA_database=eva 
 
# The server to connect to for database access (e.g., localhost) 
server=localhost 
 
# The port number 
port=8889 
 
# The username to access the databases 
username=root 
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# The password to access the databases 
password=root 
 
# Absolute path to provean.sh from PROVEAN installation (e.g., 
/usr/local/bin/provean.sh) 
PROVEAN=/usr/local/bin/provean.sh 
 
# Path to compiled PROVEAN library (available with EVA in ProveanLibrary 
directory) 
PROVEAN_library=/path/to/ProveanLibrary 
 
# Directory containing Vienna RNA executables (e.g., /usr/local/bin/) 
ViennaRNA=/usr/local/bin/ 
 
# Output fields. * denotes fields automatically included in output 
regardless of configuration. 
# * POS   Position in the reference genome 
# * REF   Reference sequence (DNA) 
# * ALT   Alternate sequence (DNA) 
#  VARIATION  Type of sequence variation 
#  SPAN   How the sequence variation corresponds to an 
annotation 
#  GENE_MUTATION Type of gene mutation 
# * FEATURE_ID  Feature identifier in RegulonDB or EcoCyc database 
# * FEATURE_TYPE Type of feature corresponding to the mutation 
# * FEATURE_NAME Name of Feature 
#  BNUM   B-number (only applicable for genes) 
#  STRAND  Feature strand (+ corresponds to forward strand, - 
corresponds to reverse strand) 
#  FEATURE_LEFT Leftmost position of feature 
#  FEATURE_RIGHT Rightmost position of feature 
#  FEATURE_REF  Feature reference sequence (DNA) 
#  FEATURE_ALT  Feature alternate sequence (DNA) 
#  FEATURE_AA_REF Feature reference sequence (AA, only applicable 
for genes) 
#  FEATURE_AA_ALT Feature alternate sequence (AA, only applicable 
for genes) 
#  SEQ_EDIT_DIST The Levenshtein distance between the reference and 
alternate feature sequence 
#  STRUCTURE_DIST The edit distance between reference and alternate 
feature predicted structures (only applicable for RNA features) 
#  HGVS   Description of mutation following Human Genome 
Variant Society nomenclature, used for PROVEAN analysis (only applicable 
for protein-coding gene features) 
#  PROVEAN  PROVEAN score (only applicable for protein-coding 
gene features) 
#  RNA_THRESHOLD Delta MFE threshold for assigning high priority 
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#  RNA_MFE_REF  Predicted MFE for reference sequence (only 
applicable for RNA features) 
#  RNA_MFE_ALT  Predicted MFE for alternate sequence (only 
applicable for RNA features) 
#  RNA_STRUCT_REF Predicted secondary structure for reference 
sequence (only applicable for RNA features) 
#  RNA_STRUCT_ALT Predicted secondary structure for alternate 
sequence (only applicable for RNA features) 
#  SIGMA70_REF  Sigma70 predicted MFE for reference sequence (only 
applicable for promoter features associated with sigma 70) 
#  SIGMA70_ALT  Sigma70 predicted MFE for reference sequence (only 
applicable for promoter features associated with sigma 70) 
# * PRIORITY  Priority assigned to mutation (UNASSIGNED, LOW, 
HIGH) 
# * COMMENT  EVA comments and errors running analysis 
 
# User-specified fields to include in output file. 
fields=VARIATION,\ 
SPAN,\ 
GENE_MUTATION,\ 
BNUM,\ 
STRAND,\ 
FEATURE_LEFT,\ 
FEATURE_RIGHT,\ 
FEATURE_REF,\ 
FEATURE_ALT,\ 
FEATURE_AA_REF,\ 
FEATURE_AA_ALT,\ 
SEQ_EDIT_DIST,\ 
STRUCTURE_DIST,\ 
HGVS,\ 
PROVEAN,\ 
RNA_THRESHOLD,\ 
RNA_MFE_REF,\ 
RNA_MFE_ALT,\ 
RNA_STRUCT_REF,\ 
RNA_STRUCT_ALT,\ 
SIGMA70_REF,\ 
SIGMA70_ALT 
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Hierarchy for all packages 

Class Hierarchies 

• java.lang.Object 

o annotation.AbstractAnnotation<T> (implements java.lang.Comparable<T>) 

§ annotation.impl.Annotation 

§ annotation.impl.GeneAnnotation 

§ annotation.impl.PromoterAnnotation 

§ annotation.impl.RNAAnnotation 

§ annotation.impl.Unannotated 

o dao.AbstractDatabaseDAO 

§ dao.impl.EvaDBDAO 

§ dao.impl.RegulonDBDAO 

o feature.AbstractFeature 

§ feature.AbstractGenomicFeature 

• feature.AbstractPromoterFeature 

o feature.impl.Box10 

o feature.impl.Box35 

• feature.impl.AttenuatorTerminator 

• feature.impl.Gene 

• feature.impl.Operon 

• feature.impl.Rfam 

• feature.impl.ShineDalgarno 

• feature.impl.SRNAbs 
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• feature.impl.Terminator 

• feature.impl.Tfbs 

§ feature.impl.Attenuator 

§ feature.impl.Pathway 

§ feature.impl.Product 

§ feature.impl.Reaction 

§ feature.impl.TranscriptionFactor 

§ feature.impl.TranscriptionUnit 

o dao.AbstractFeatureDAO 

§ dao.impl.AttenuatorDAO (implements dao.FeatureDAO) 

§ dao.impl.AttenuatorTerminatorDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.Box10DAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.Box35DAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.GeneDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.OperonDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.PathwayDAO (implements dao.FeatureDAO) 

§ dao.impl.ProductDAO (implements dao.FeatureDAO) 

§ dao.impl.ReactionDAO (implements dao.FeatureDAO) 

§ dao.impl.RfamDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.ShineDalgarnoDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.SRNAbsDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.TerminatorDAO (implements dao.GenomicFeatureDAO) 

§ dao.impl.TfbsDAO (implements dao.GenomicFeatureDAO) 
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§ dao.impl.TranscriptionFactorDAO (implements dao.FeatureDAO) 

§ dao.impl.TranscriptionUnitDAO (implements dao.FeatureDAO) 

o network.AbstractNetwork 

o result.AbstractResult 

§ result.GeneResult 

§ result.GenericResult 

§ result.PromoterResult 

§ result.RNAResult 

§ result.UnannotatedResult 

o analysis.AnalysisStrategyFactory 

o annotation.AnnotationFactory 

o analysis.BindingSiteStrategy (implements analysis.AnalysisStrategy<T>) 

o sequence.Codon 

o core.Consts 

o network.Edge 

o core.EVA 

o util.fileImport.FastaReader 

o dao.FeatureDAOFactory 

o feature.FeatureLink 

o java.util.logging.Formatter 

§ util.ConsoleFormatter 

o analysis.GenericStrategy (implements analysis.AnalysisStrategy<T>) 

o analysis.GeneStrategy (implements analysis.AnalysisStrategy<T>) 
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o annotation.HGVS 

o feature.Interaction 

o genome.Interval 

o genome.IntervalComparator (implements java.util.Comparator<T>) 

o jdbc.impl.JdbcManagerImpl (implements jdbc.JdbcManager) 

o util.Kmer 

o util.LevenshteinAlignment 

o genome.MergeIntervals 

o mutation.Mutation (implements java.lang.Comparable<T>) 

o mutation.MutationComparator (implements java.util.Comparator<T>) 

o util.fileImport.MutationImporter 

o network.Network 

§ network.Branch 

o network.NetworkBuilder 

o network.Node 

§ network.RootNode 

o util.fileImport.ParseCSV 

o util.fileImport.ParseGD 

o util.fileImport.ParseProvean 

o util.fileImport.ParseVCF 

o core.Project 

o analysis.PromoterStrategy (implements analysis.AnalysisStrategy<T>) 

o util.scripts.ProveanResult 
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o util.RandomMutation 

o feature.Regulation 

o util.ResultFormat 

o util.scripts.RNAfoldResult 

o analysis.RNAStrategy (implements analysis.AnalysisStrategy<T>) 

o core.RunEVA 

o util.scripts.RunProvean 

o util.scripts.RunVienna 

o sequence.Sequence (implements java.lang.Comparable<T>) 

§ sequence.AA 

§ sequence.DNA 

§ sequence.RNA 

o network.ShortestPath 

o util.Statistics 

o annotation.TestHGVS 

o java.lang.Throwable (implements java.io.Serializable) 

§ java.lang.Exception 

• analysis.AnalysisException 

• core.InitializationException 

• util.fileImport.MutationImportException 

• java.lang.RuntimeException 

o annotation.AnnotationException 

o dao.exception.DataAccessException 
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§ dao.exception.DataAccessConnectionFailureException 

§ dao.exception.DataAccessSQLException 

o feature.FeatureException 

o mutation.MutationException 

o sequence.SequenceException 

• sequence.TranslationException 

o util.VariantGenerator 

Interface Hierarchy 

• analysis.AnalysisStrategy<T> 

• dao.FeatureDAO 

o dao.GenomicFeatureDAO 

• jdbc.JdbcManager 

• jdbc.RowMapper<T> 

 

Enum Hierarchy 

• java.lang.Object 

o java.lang.Enum<E> (implements java.lang.Comparable<T>, java.io.Serializable) 

o util.ResultFormat.Columns 

o feature.impl.Terminator.TerminatorClass 

o feature.impl.Attenuator.AttenuatorType 

o feature.impl.Gene.GeneType 

o feature.impl.AttenuatorTerminator.AttenuatorTerminatorType 

o feature.impl.Product.ProductType 
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o feature.impl.Pathway.PathwayType 

o core.Priority 

o core.Consts.Database 

o core.Consts.Genome 

o core.Consts.RegulonDB 

o sequence.Strand 

o annotation.Span 

o annotation.HGVS.HGVSType 

o annotation.GeneMutationType 

o annotation.TestHGVS.HGVSpattern 

o network.Distance 

o mutation.Mutation.Variation 

o feature.Mechanism 

o feature.Interaction.InteractionType 

o feature.FeatureType 

o feature.AbstractPromoterFeature.SigmaFactor 
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